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ABSTRACT

Oleinik’s no back-flow condition ensures the existence and uniqueness of solutions for the Prandtl
equations in a rectangular domain R ⊂ R

2. It also allowed us to find a limit formula for Dorod-
nitzyn’s stationary compressible boundary layer with constant total energy on a bounded convex
domain in the plane R2. Under the same assumption, we can give an approximate solution u for the
limit formula if |u|<<< 1 such that:

u(z) ∼= δ ∗ c ∗
[

z +
6

25
· 1

2i0
· 4U

2

3
z4
]

+ o(z5),

that corresponds to an approximate horizontal velocity component when a small parameter ǫ given
by the quotient of the maximum height of the domain divided by its length tends to zero. Here,
c > 0, δ is the boundary layer’s height in Dorodnitzyn’s coordinates, U is the free-stream velocity
at the upper boundary of the domain, and T0 is the absolute surface temperature.

Keywords Boundary layer theory · theory Gas dynamics

1 Introduction

First, the limit formula is rewritten as a non-linear ordinary differential equation of order 1 in Lemma 1,

∂u

∂s
= c

[

1−
(

u2/2i0
)]

−6/25
,

where i0 = cp T0 the constant total energy value, cp is specific heat at constant pressure, T0 is the absolute surface
temperature, c = ∂u/∂s|s=0 > 0 is a strictly positive constant that represents the no back-flow condition continuous
extension to the lower boundary, and the fractional exponent −6/25 = 19/25 − 1 comes from the empirical Power-

Law µ/µh = (T/Th)
19

25 for the absolute temperature T and the dynamic viscosity µ with the free-stream dynamic
viscosity µh > 0, and the free-stream temperature Th > 0 at the upper boundary [3, p. 46].

Then, it is shown in Lemma 2 that if |u|<<< 1, the non-linear term can be expressed as a power series
[

1−
(

u2/2i0
)]

−6/25
= 1 + (6/25)(1/2i0) u

2 + o(u4). In Theorem 1, we seek a solution of the form of a fourth

degree polynomial, Az + Bz2 + Cz3 +Dz4, in the same way it is done in [1, 2]. The existence and unicity of the
solutions comes from the Darboux sums limit of the Riemann integral taken to solve Eq. (2).

2 Problem Statement

The limit formula (Eq. (1) in the next page) is presented as a non-linear ordinary differential equation of order 1.

http://arxiv.org/abs/2201.00282v1
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Definition 1. Let D̃ ⊂ R
3 be a bounded open subset of the three dimensional Euclidean space such that its projection

D̃ ∩ R
2 is a planar region D,

D: =
{

(x, y) ∈ R
2 | 0 < x < L& 0 < y < h(x)

}

,

where L >>> h > 0, and h: [0, L] → (0,∞) ∈ C2([0, L]) has derivatives up to order two in (0, L) with extension to
the corresponding extremes, {0, L}, of this interval, and h(0) = h(L) = δ. Moreover, the upper boundary h has only
one critical point c which is a global maximum, h(c) = H ≥ h(x) ∀x ∈ [0, L]. We denote the topological boundary
of D by ∂D.

Definition 2. Consider: (i) the first coordinate ℓ of Dorodnitzyn’s diffeormorphism such that for all (x, y) ∈ D,

ℓ (x, y) = c1
[

1−
(

U2/2i0
)]

x, where the free-stream velocity u|y=h(x)= U > 0, c1 = p0 T
2b/b−1
0 , p|y=0= p0 is

the pressure at the lower boundary, T0 is absolute surface temperature, and b = 1.405 is the exponent of the adiabatic

and polytropic atmosphere constant, p V b = cte., for the volume V =
∫∫∫

D̂dx [4, p. 35]; (ii) the second coordinate
s of Dorodnitzyn’s diffeomorphism

s (x, ŷ) =

∫ ŷ

0

ρ(x, y)dy,

where ρ is the density; and (iii) the upper boundary in the Dorodnitzyn’s domain, δ(x, h(x)) =
∫ h(x)

0 ρ(x, y)dy. Then,

s = (ℓ, s) is a diffeomorphism defined in the domain D [5].

Lemma 1. Let D be a convex domain and s : D → s(D) as described in Definition 1 and 2. Assume that (i)
u ∈ C2(D), (ii) ∂u/∂s > 0 in D with a continuous extension to ∂u/∂s|s=0= c > 0 to a positive constant c, (iii)
u(ℓ, 0) = 0 for all ℓ ∈ [0, 1], and (iv) the following relation:

f
∂2u

∂s2
=

∂f

∂s

∂u

∂s
, (1)

where f =
[

1−
(

u2/2i0
)]

−6/25
> 0, and i0 is an strictly positive constant. Then, u is a solution of Eq. (1) if and

only if it verifies Eq. (2):

∂u

∂s
= c

[

1−
(

u2/2i0
)]

−6/25
. (2)

Proof. If g = ∂u/∂s, then Eq. (1) becomes (∂g/∂s)/g = (∂f/∂s)/f . This is,
∫ y

0
∂
∂s [ln (g(s))] ds =

∫ y

0
∂
∂s [ln (f(s))] ds. Thus, exp [ln (g(y)/g(0))] = exp [ln (f(y)/f(0))]. Therefore, g(y) = (g (0) /f (0)) f(y).

The no-slip condition u(x, 0) = 0 for all x ∈ [0, L] implies that f(0) = 1. Finally, we substitute g = ∂u/∂s, and we
obtain Eq. (2).

3 Analytic solutions for the limit formula

In Lemma 2, we show that there is an expression of the non-linear term
[

1−
(

u2/2i0
)]

−6/25
as a convergent power

series if |u|<<< 1. Finally, following [1, 2], in Theorem 1, we may seek a solution of the form of a fourth degree
polynomial with coefficients chosen so that the boundary conditions of the problem are satisfied.

Lemma 2. Let |u|<<< 1. Then,

[

1−
(

u2/2i0
)]

−6/25
= 1 +

6

25
· u2

2i0
+

6

25
· u4

2(2i0)2
+

1

2
· 6

25
· u4

(2i0)2
+ o(u6). (3)

Proof. If σ = 1 − (u2/2i0) ∼= 1, then θ = (−6/25) ln
(

1− (u2/2i0)
)

<<< 1. We apply the Maclaurin formula for

the exponential, eθ = 1+ θ+ (1/2)θ2 + (1/3! )θ3 + · · ·, and the Taylor series expansion for the logarithmic function
if |σ|< 1, log(1 + σ) = σ − (1/2)σ2 + (1/3! )σ3 + · · ·, so that:

[

1−
(

u2/2i0
)]

−6/25
= exp

[−6

25
ln

(

1− u2

2i0

)]

,

= exp

[−6

25

{

ln

(

1 +
u√
2i0

)

+ ln

(

1− u√
2i0

)}]

,

= 1 +
6

25
· u2

2i0
+

6

25
· u4

2(2i0)2
+

1

2
· 6

25
· u4

(2i0)2
+

+
6

25
· u6

3(2i0)3
+

6

25
· u6

2(2i0)3
+ o(u8).

2



A PREPRINT - JANUARY 4, 2022

Remark 1. In order to identify the coefficients of a polynomial expression for u, we observe Dorodnityzn’s steps [1, 2].
If we take the upper boundary conditions for the second order derivative from the problem stated by Dorodnitzyn
on the domain s(D), then the boundary conditions establish a system of four equations for the coefficients A, B,
C, D so that u can be expressed as a fourth degree polynomial Az + Bz2 + Cz3 + Dz4 for z = s/δ if A =
U [2 + (λ/6)], B = −U (λ/2), C = U [(λ/2)− 2], and D = U [1− (λ/6)], where λ is the Pohlhausen coefficient

λ =
[

−δ/
(

1− U2
)]

∂U/∂ℓ, and λ = 0 if U is constant.

Remark 2. For each fixed value of x ∈ [0, L], the height’s normalization z(x) = s(x)/δ(x) ∈ [0, 1]. Additionally,
∂u/∂z = δ ∗ ∂u/∂s because ∂u/∂z = (∂u/∂s)(∂s/∂z) + (∂u/∂ℓ)(∂ℓ/∂z) and ℓ is independent of z.

Theorem 1. Under the same conditions of Lemma 1, Eq. (2) has a unique solution

u(z) = δ ∗ c ∗
[

z +
6

25
· 1

2i0
· 4U

2

3
z4
]

+ o(z5),

for the normalized height z = s/δ ∈ [0, 1].

Proof. Given Eq. (2), we can substitute Eq. (3), so that:

∂u

∂s
=

1

δ

∂u

∂z
,

= c
[

1−
(

u2/2i0
)]

−6/25
,

= c

[

1 +
6

25
· u2

2i0
+

6

25
· u4

2(2i0)2
+

1

2
· 6

25
· u4

(2i0)2
+ o(u6)

]

.

(4)

Because the stream-flow velocity U is constant, then the Pohlhausen coefficient λ = 0. Thus, we can seek a solution
with a fourth degree polynomial form u(z) = 2Uz − 2Uz3 + Uz4. If we replace this expression in the Eq. (4):

u(z) = δ ∗ c ∗
∫ z

0

[

1 +
6

25
· u(τ)

2

2i0
+

6

25
· u(τ)4

2(2i0)2
+

1

2
· 6

25
· u(τ)

4

(2i0)2
+ o(u6)

]

dτ,

= δ ∗ c ∗
[

z +
6

25
· 1

2i0
· 4U

2

3
z4
]

+ o(z5).

4 Conclusion

Olga Oleinik’s no back-flow condition is sufficient to show the existence and unicity of solutions for Dorodnitzyn’s
gaseous boundary layer limit when the horizontal velocity component is small. The fact that one can find analytic
approximations for in a compressible boundary layer when the horizonal component of the velocity is small allows us
not only to empirically see that the velocity profile is stable at low velocities, but also to analytically understand that,
in this case, one can arrive at flow expressions that linearly depend on the height.

5 Appendix
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