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Abstract: The U-net is nowadays among the most popular deep learning algorithms for land use/land
cover (LULC) mapping; nevertheless, it has rarely been used with synthetic aperture radar (SAR)
and multispectral (MS) imagery. On the other hand, the discrimination between plantations and
forests in LULC maps has been emphasized, especially for tropical areas, due to their differences
in biodiversity and ecosystem services provision. In this study, we trained a U-net using different
imagery inputs from Sentinel-1 and Sentinel-2 satellites, MS, SAR and a combination of both (MS +
SAR); while a random forests algorithm (RF) with the MS + SAR input was also trained to evaluate
the difference in algorithm selection. The classification system included ten classes, including old-
growth and secondary forests, as well as old-growth and young plantations. The most accurate
results were obtained with the MS + SAR U-net, where the highest overall accuracy (0.76) and
average F1-score (0.58) were achieved. Although MS + SAR and MS U-nets gave similar results
for almost all of the classes, for old-growth plantations and secondary forest, the addition of the
SAR band caused an F1-score increment of 0.08–0.11 (0.62 vs. 0.54 and 0.45 vs. 0.34, respectively).
Consecutively, in comparison with the MS + SAR RF, the MS + SAR U-net obtained higher F1-scores
for almost all the classes. Our results show that using the U-net with a combined input of SAR and
MS images enabled a higher F1-score and accuracy for a detailed LULC map, in comparison with
other evaluated methods.

Keywords: deep learning; multispectral and synthetic aperture radar (SAR) imagery; convolutional
neural networks; tropical landscape mosaic; LULC mapping

1. Introduction

Land use/land cover (LULC) classification has long been a topic of interest in Earth
observation research [1–3]. These studies provide characterizations of large extents of the
Earth surface by classifying the continuous variation of its attributes in discrete classes and
contribute in the establishment of baselines in LULC change studies, which are essential for
the management and monitoring of the land surface [4–7]. For this reason, LULC studies
are crucial for the management and monitoring of the land surface.

A variety of LULC classification systems have been developed for different purposes.
Particularly in tropical regions, several studies have emphasized the importance of discrimi-
nating between old-growth forests and plantations, as well as secondary forests, due to their
differences in environmental management and biodiversity conservation [8–12]. Although
these three classes may have similar canopy cover, secondary forests and plantations usu-
ally hold less above ground biomass, host less biodiversity and provide different ecosystem
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services than old-growth forests [13–16]. Furthermore, the clearing of old-growth forests to
establish plantations can lead to an increase in the carbon emissions from the dead biomass
or soil [17,18].

Previous studies have relied on remote sensors to obtain reflectance or backscattering
signals of the land surface to predict different LULC. Therefore, with the development
of new sensors and other technological advances, novel methods for obtaining LULC
classifications have been proposed [19–23]. Recently, deep learning approaches have
gained a lot of popularity due to the increase in accuracy, in comparison with previous
machine learning approaches [24–26]. Additionally, deep learning algorithms are capable
of learning complex and nonlinear patterns in the spatial and temporal dimensions, and
they do not require a previous transformation of the inputs, e.g., calculating spectral
transformations such as vegetation indices [27–30]. Thus, deep learning algorithms are
among the most explored types of algorithms for obtaining LULC classifications and other
Earth observation applications [31–34].

Fully Convolutional Neural Networks are a particular type of Convolutional Neural
Networks (CNN) that allow obtaining a class prediction for each pixel in an
image [25,26,35–39]. These algorithms are capable of identifying patterns at different
scales to produce classifications [32,37]. Thus, CNN architectures are nowadays among
the most widely applied algorithms for classification tasks [20], and particularly, the U-net
is one of the most popular algorithms in LULC studies [31,32,40] due to its capability of
summarizing patterns in both the spectral and spatial domain (for additional details see
Section 2.3).

Several studies have successfully used the U-net to evaluate forest disturbance and
degradation, identify plantations or buildings, among others [41–48]. Furthermore, this
architecture is designed to work with a small sample size, a common problem for LULC
classification [25,40]. Nevertheless, the U-net has rarely been trained using multispectral
bands (MS) besides RGB ones or in combination with synthetic aperture radar images
(SAR) [31,32,37,49], even though the combination of MS and SAR imagery has provided
more accurate results to generate LULC maps [7,50–53]. For example, the information of
MS images can be very useful to differentiate among certain LULC classes (e.g., water,
bare soil, vegetation); however, SAR data can interact with the structure of vegetation (i.e.,
branches, leaves, stems) and therefore can potentially discriminate between forests and
plantations [54].

The U-net algorithm has been used in combination with very high spatial resolution
(VHR) imagery because it was initially designed for biomedical image segmentation
that intends to segment fine-grained class boundaries [31,40]. Nonetheless, for Earth
observation applications, medium resolution images from satellite sensors such as Landsat
or Sentinel are preferable due to their wider spatial coverage, sufficient resolution for land
cover mapping, and most importantly, their free-of-cost availability [44,49,51,55]. All of
these traits make them an excellent option for environmental monitoring.

In this context, the objective of this study is to evaluate the potential of the U-net in
combination with Sentinel-1 and Sentinel-2 images to develop a detailed LULC classifica-
tion in a tropical area in Southern Mexico, with a particular interest to differentiate young
and old-growth plantations, as well as secondary and old-growth forests. In addition, this
evaluation includes comparing the results obtained with the U-net and the random forests
(RF) algorithm (a machine learning algorithm), as well as assessing the effect of image input
over the classification accuracy. Because the U-net summarizes both spectral and spatial
features to perform the LULC classification, we expect that it will obtain higher accuracy
than the RF algorithm, which only uses spectral features. In addition, we assume that the
combination of MS and SAR with the U-net will help differentiate natural forests from
plantations because of their difference in spatial configuration (i.e., random vs. uniform).
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2. Materials and Methods
2.1. Study Site

The study site is located in southeastern Mexico, in the municipalities of Marqués
de Comillas, Benemérito de las Américas and Ocosingo, Chiapas (Figure 1). This area is
part of the Selva Lacandona region, which holds one of the largest massifs of conserved
tropical rainforest in North America [56,57]. Additionally, this region shows some of the
highest deforestation rates in the country, which have been related to livestock ranching
and, to a lesser extent, to agriculture or rubber/oil palm plantations [58–60]. This region
exhibits a complex mosaic of LULC classes that includes tropical rainforest (old-growth
and secondary), oil palm and rubber plantations, grasslands, agricultural fields, water,
roads, areas with no or scarce vegetation, human settlements and aquatic vegetation.
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are shown.

The complete method is divided in three sections: (1) satellite imagery and LULC
classes acquisition and preprocessing, (2) algorithm training and validation (with two
subsections: U-net and RF) and (3) most accurate architecture selection, complete study
area LULC classification and accuracy assessment (Figure 2). The following paragraphs
will describe each one of these sections.
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2.2. Imagery and LULC Classes Acquisition and Pre-Processing
2.2.1. Remote Sensing Input Imagery

Sentinel-1 (SAR) and Sentinel-2 (MS) images were the imagery inputs used to train the
U-net and RF algorithms. For Sentinel-1, the Ground Range Detected (GRD) collection was
selected and only images acquired in the interferometric wide swath mode and ascending
orbit were consulted. The two available SAR bands, vertical transmission and reception
(VV) and vertical transmission and horizontal reception (VH), were converted from σ0 to
γ0 by correcting the backscatter coefficient to the angle of acquisition of the image [61,62].
For the Sentinel-2 images, only the bands with the finest resolution were used, i.e., bands B,
G, R and NIR with a pixel size of 10 m. These images corresponded to the Sentinel-2 2A
collection, i.e., bottom of the atmosphere reflectance.

We first selected the Sentinel-2 image that had the lowest cloud cover percentage
and was closest to the acquisition date of the field data (recorded in March 2019). This
corresponded to an image acquired on 4 July 2019. Afterwards, the mean backscattering
coefficient of nine Sentinel-1 images that were acquired up to one month prior to this date,
i.e., from 4 June 2019 to 4 July 2019, was calculated to reduce the speckle noise typical of
SAR images. In addition, a circular filter with radius = 3 pixels was applied to the mean
backscattering image to further reduce the speckle noise.

Finally, three different remote sensing imagery datasets were constructed to test the
performance of the U-net: (1) MS (4 bands), (2) SAR imagery (2 bands) and (3) MS + SAR
imagery (6 bands). All the image processing was carried out in Google Earth Engine using
the Javascript API (https://code.earthengine.google.com/, accessed on 16 May 2021) [63].

2.2.2. Acquisition of Training and Validation Data

Training data were manually classified through visual interpretation by an interpreter
who performed the field data acquisition in 33 systematically selected areas of 256 × 256
pixels, where LULC information was gathered in the field (Figure 1). The training data
were created using these in-field observations (300 points) and remote sensing imagery
which included Sentinel-2 images from 2016–2020, Planet images from January and March
2019 (pixel size = 3.12 m) [64] and VHR images provided by Google Earth [65], Yandex [66]
and Bing [67] (pixel size < 1 m) as XYZ tiles in QGIS 3.16 [68]. The 33 areas were visually
classified into 10 classes: old-growth forest, secondary forest, old-growth plantations,
young plantations, grasslands/agricultural fields, roads, soil or areas with no vegetation,
water, human settlements and aquatic vegetation. Additionally, the training dataset for MS
and MS + SAR included two additional classes, clouds and shadows, which represented
areas for which a LULC class could not be obtained based on the MS data, thus these
areas would be masked out in the final LULC map. These two classes were not included
in the calculation of the final performance metrics (see Section 2.3.1 and Section 2.3.2).

https://code.earthengine.google.com/
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The resulting classifications were rasterized with a pixel size equal to the Sentinel-1 and
Sentinel-2 resolution (i.e., 10 m). Finally, the LULC manual classification maps consisted of
12 bands, one for each class, with binary values of 1: presence and 0: absence. Finally, to
estimate the error associated with the visual interpretations, a stratified random sampling
procedure was implemented, which resulted in 119 points. These points were interpreted
without the field acquired information, and these interpretations were contrasted with the
field information to calculate the error present in the training data.

In addition, several pre-processing operations were performed on the U-net’s input
information. First, imagery data were standardized by subtracting each band’s mean and
divided by its standard deviation. Moreover, both the imagery and the LULC manual clas-
sification data were augmented by subsampling each 256 × 256-pixel area into 128 × 128
pixel tiles using a 64 pixel offset and mirroring these areas in both a vertical and horizontal
directions. After this procedure, the total augmented dataset consisted of 891 sample units.
From this dataset, 621 observations, from 23 images (256 × 256 pixel tiles) were used as
the training set and 270 observations, from 10 images (256 × 256 pixel tiles) were used as
the verification set. This procedure was performed using R 4.0.3 [69] and the raster [70],
rray [71] and reticulate [72] packages.

2.3. Algorithm Training and Validation

First, the U-net architecture with different inputs was trained. Afterwards, the imagery
input that obtained the highest F1-score with the U-net was used to train a RF algorithm.
The comparison among the three types of trained U-nets had the purpose of evaluating
the effect of the imagery inputs on its capabilities to generate a LULC map, while the
comparison of the most accurate U-net with the RF algorithm had the objective of providing
a point of comparison for algorithm selection (i.e., U-net vs. RF).

2.3.1. U-Net

The U-net is a CNN based algorithm; therefore, like any CNN, it “learns” to recognize
the classes of interest using a supervised scheme by fixing the weights of convolutional
filters in an iterative process [27,28]. These convolutional filters are usually organized in
a network-like structure that enables the CNN to recognize spectral and spatial patterns
at different scales [32,37]. The U-net has two parts, an encoder and a decoder (Figure 3).
In the encoder section, the input image is passed through several hidden layers. In each
pass, the spatial resolution is reduced by the effect of the down sampling filters, while
the “spectral” resolution is increased. On the contrary, in the decoder part, the image is
passed through other hidden layers that perform the opposite process of the encoder part.
Thus, in each pass, the image loses spectral resolution while it gains spatial resolution to
obtain the final LULC classification. Two outputs are obtained from the U-net: the LULC
classification map and the probability map. The typical U-net architecture comprises of five
hidden layers [40]; however, in this study, due to memory restrictions, a simpler version of
the U-net was used, with two to four hidden layers (Figure 3), which is expected to also
reduce the chances of overfitting [73]. For a detailed description of the U-net architecture
please consult [40].
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The whole training process was implemented in R 4.0.3, using the U-net and keras
packages [74,75] to construct the U-net architecture and tensorflow [76] as the backend for
keras. In turn, to search for the optimal hyperparameters, several iterations were fitted
using an early stopping procedure to avoid overfitting. In this procedure, training was
stopped if the loss metric over the validation set did not decrease in 0.01 in 10 iterations.
The tested combination of hyperparameters included batch size (8, 16, 32), number of filters
in the first layer (32, 64), number of hidden layers (2–4) and dropout probability (0, 0.1, 0.2,
0.3, 0.4, 0.5) [77]. In addition, cross-entropy was used as the loss function, while Adam
was the selected optimizer [78]. Additionally, a batch normalization and a He initialization
were implemented to set the initial weights [79].

In order to monitor the algorithm’s training, two additional metrics, overall accuracy
and average F1-score (avgF1-score; Equation (1)), were calculated in each iteration on both
the training and validation sets. The overall accuracy was calculated as the number of
correctly classified pixels over the total of pixels. Additionally, the F1-metric was calculated
as the harmonic mean of precision and recall (Equation (1)). Afterwards, all the F1-scores
were averaged to obtain an avgF1-metric [80]:

avgF1 =
1
C

C

∑
c=1

2
pr

p + r
(1)

p =
TP

TP + FP
(2)

r =
TP

TP + FN
(3)

where avgF1 stands for the overall average F1-score, C for the number of classes (i.e.,
10 classes), c for each class, p for precision, r for recall, TP for true positives, FP for false
positives and FN for false negatives (Equations (2) and (3)). During the training phase,
the F1-scores are calculated as an average of the F1-score of all the batches of the epoch.
Thus, the U-net comparisons were made using this batch-averaged F1-score. However,
because the RF training is not performed with batches, an avgF1-score was calculated for
each U-net architecture, in order to enable F1-score comparisons with the RF algorithm.
This avgF1-score was obtained directly from the confusion matrix observations (with the
validation data), instead of an average of the per batch F1-score. Finally, the most accurate
U-net architecture was selected as the one with the highest avgF1-score.
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The hyperparameter exploration was done using the tfruns package [81]. In total,
90 architectures were generated for each type of input (i.e., MS, SAR and MS + SAR),
which resulted in a total of 270 trained U-nets. All of the training and validation procedure
was run in an NVIDIA RTX 2060 with 6 GB of memory. The code used to augment the
training data, as well as the U-net hyperparameter exploration and training are available at
https://github.com/JonathanVSV/U-netR (accessed on 26 April 2021).

2.3.2. Random Forests

The RF algorithm is one of the most popular machine learning algorithms in LULC
classification [21,52,82]. This algorithm is an ensemble learning method based on decision
trees that trains several trees on random subsets of the sample observations and predictive
variables. Afterwards, this algorithm assigns the final class for each pixel as the one that
had the most votes from the individual trees [83].

The RF classification was performed using the same input information as the most
accurate U-net (i.e., MS + SAR, see Results section). In this classification, the same training
and validation data as in the U-net were used, but without the augmentation procedure.
Thus, the training data consisted of 23 areas of 256 × 256 pixels, while the validation data,
of 10 areas of 256 × 256 pixels. Due to computing memory restrictions, the RF algorithm
could not be trained using the complete training set; therefore, we decided to randomly
sample the training set to obtain a balanced dataset with the same number of observations
per class [84]. The training data for the RF algorithm consisted of 6057 points by class,
because this was the smallest number of observations (i.e., pixels) in the rarest class (i.e.,
aquatic vegetation). The RF algorithm was trained using the random Forest R package [85]
with 500 trees and two randomly selected variables at each split. Once the RF was trained,
it was used to predict the LULC classification of the validation data, and the LULC classes
were evaluated using a confusion matrix and the same metrics as the U-net results, i.e.,
overall accuracy and avgF1-score.

2.4. Complete Study Area LULC Classification and Accuracy Assessment

The most accurate U-net architecture (i.e., MS + SAR) was afterwards used to predict
the LULC classification of the complete study area. A known problem in this step is that
frequently the edges of the predicted tiles show results with less quality than the one in
areas closer to the center of the tile [40,43]. This is caused by the fact that pixels found in the
edges of the tiles have a smaller number of neighboring pixels than its counterparts farther
from the edges; thus, the spatial information extracted by the convolutions is limited in
areas closer to the edges. In order to reduce this effect, we divided the complete study
area into two grids of 128 × 128 pixel tiles so that the edges of the predicted tiles in one
grid overlapped with the center of the predicted tiles of the other grid. Afterwards, the
predicted tiles in both grids were mosaicked, selecting the LULC class of each pixel as the
one with the highest probability.

The LULC classification accuracy for the complete study area was evaluated following
a stratified random sampling design [86–88] where the random points are distributed by
the proportion of the area occupied by each class in the LULC map, except for the rarest
classes, where a larger number of random points than its corresponding area proportion is
assigned. The total number of sample units for the verification process was calculated as
(Equation (4); [86]).

n =

(
∑

q
i WiSi

)2

(
S
(
Ô
))2

+ (1/N)∑
q
i WiSi

2
≈
(

∑
q
i WiSi

S(O)

)2

(4)

where S
(
Ô
)

is the desired standard error of the estimated overall accuracy. Here we
adopted a slighter higher value than the one recommended by [87], 0.015. Wi is the
proportion of area occupied by each class in the classification, while i stands for each
class, while q stands for the number of classes. Si is the standard deviation of class i,

https://github.com/JonathanVSV/U-netR
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Si =
√

Ui(1 − Ui), where Ui stands for the a priori expected user’s accuracy. In this case,
we used the user’s accuracy values obtained for the validation dataset (Tables A1–A3).

For the rarest classes (classes with less than 5% of the map, i.e., all classes except
old-growth forest, grassland/agriculture and soil), 25 points were assigned per class, while,
for the most abundant classes (old-growth forest, grassland/agriculture and soil), the
number of verified points was assigned as a proportion of the area occupied by each class,
giving a total of 448 points. The verification process was performed by visual interpretation
using the same information as the one performed to create the manual classification of the
256 × 256 pixel tiles, i.e., Sentinel-2 2016–2019 images, Planet 2019 images, Google Earth,
Bing and Yandex.

Finally, the Openforis accuracy assessment tool [89] was used to calculate unbiased
area estimates, and its 95% confidence intervals. These estimates were based on the
confusion matrix resulting from the accuracy assessment process and the proportion of
area occupied by each class according to Equations (5) and (6). Additionally, the F1-scores
of each class, overall accuracy and avgF1-score were calculated.

S( p̂.k) =

√√√√ q

∑
i

W2
i

nik
ni.

(
1 − nik

ni.

)
ni. − 1

(5)

95% CI Âk =

(
A

q

∑
i=1

Wi
nik
ni.

)
± 1.96 (A S( p̂.k)) (6)

where S( p̂.k) is the standard error of the estimated area proportion for class k, Wi is the area
proportion of map class i, nik stands for the sample count at cell (i,k) in the error matrix,
while ni. is the row sum for class i. In addition, 95% CI stands for the 95% confidence
intervals of Âk, the estimated area of class k, A is the total map area, while q stands for the
number of classes.

3. Results
3.1. U-Net
3.1.1. Input Imagery and Hyperparameter Exploration

The results for the hyperparameter exploration showed that MS + SAR had the
highest overall accuracy (0.76) and avgF1-score (0.58) on the verification dataset, followed
very closely by MS (overall accuracy = 0.75, avgF1-score = 0.55) and finally SAR (overall
accuracy = 0.65, avgF1-score = 0.39; Tables A1–A3). A similar pattern was observed for the
same metrics evaluated on the training dataset (MS + SAR: overall accuracy = 0.91, avgF1-
score = 0.86; MS overall accuracy = 0.91, avgF1-score = 0.86; SAR: overall accuracy = 0.72,
avgF1-score = 0.60). Thus, MS + SAR U-net was selected as the most accurate architecture.
Two of the most accurate architectures, MS + SAR and MS, had three hidden layers, batch
size = 16 and 64 filters in the first hidden layer (Table S1). However, the MS + SAR had a
higher dropout (0.5) than the MS (0.1). In the case of the most accurate SAR U-net, it had
two hidden layers, batch size = 8, 64 filters in the first hidden layer and an intermediate
dropout (0.3; Table S1). Finally, an error of 0.15 was detected for the visual interpretations
made for the training data without having access to the field information.

3.1.2. Image Input Comparison

MS+SAR U-net was the architecture that had the highest avgF1-score and overall
accuracy. In comparison, MS U-net showed a slightly lower avgF1-score and overall
accuracy. However, by comparing the F1-scores per class, it was evident that MS + SAR
had higher scores in three classes (∆F1-score ≥ 0.05; old-growth plantations, secondary
forest and young plantations) and lower scores in a single class (∆F1-score = 0.08; roads).
Additionally, the other five classes had a similar F1-score in either MS + SAR or MS U-net
(∆F1-score ≤ 0.01; Table 1). In comparison with the SAR U-net, MS + SAR and MS had a
higher F1-score for all the classes (Table 1); however, the F1-score for water was similar
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in the three U-net architectures (∆F1-score = 0.03). The differences in class identification
among different U-net architectures were also visually evident by comparison with the
original manual classification (Figure 4). Although there were particular differences among
the three U-net architectures, in general, the classes with highest F1-score were old-growth
forest, water and human settlements, while the poorly classified classes were young
plantations, roads and aquatic vegetation (Tables 1 and A1–A3).

Table 1. F1-score and the difference from the highest score (∆F1-score) for each class for the MS + SAR, MS, SAR U-net and
MS + SAR Random Forests. MS: Multispectral bands, SAR: synthetic aperture radar bands, RF: Random forests.

Class

U-Net RF

MS + SAR MS SAR MS + SAR

F1-Score ∆F1-Score F1-Score ∆F1-Score F1-Score ∆F1-Score F1-Score ∆F1-Score

Aquatic vegetation 0.15 0 0.10 0.05 0 0.15 0.04 0.11
Grassland/Agriculture 0.78 0 0.77 0.01 0.69 0.09 0.63 0.15
Human settlements 0.87 0 0.87 0 0.45 0.42 0.29 0.58
Old-growth forest 0.86 0 0.86 0 0.79 0.07 0.69 0.17

Old-growth
plantations 0.62 0 0.54 0.08 0.47 0.15 0.43 0.19

Roads 0.35 0.08 0.43 0 0 0.43 0.23 0.2
Secondary forest 0.45 0 0.34 0.11 0.20 0.25 0.33 0.12

Soil 0.65 0 0.64 0.01 0.30 0.35 0.57 0.08
Water 0.96 0.01 0.97 0 0.94 0.03 0.94 0.03

Young plantations 0.11 0 0.03 0.08 0.01 0.1 0.11 0
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3.2. Algorithm Comparison

When comparing the results obtained by the MS + SAR U-net and the MS + SAR RF
classification, it was obvious that the U-net had both higher avgF1-score and overall accu-
racy than its RF equivalent (∆overall accuracy = 0.23 and ∆F1-score = 0.15; Table A4). Al-
though the same pattern was observable by comparing the class F1-scores (0.08 ≤ ∆F1-score
≤ 0.58), water showed a slightly lower F1-score using the RF algorithm (∆F1-score ≤ 0.03),
while young plantations showed the same F1-score in MS + SAR RF and MS + SAR U-net
(Table 1).

3.3. Complete Study Area LULC Classification

The accuracy assessment of the complete study area classification showed an overall
accuracy of 0.77 and avgF1-score of 0.68 (Table A5). In this verification, the classes that
obtained the highest F1-score were water, human settlements, old-growth forests, grass-
lands/agriculture (Table 2). On the contrary, the classes with the lowest F1-scores were
young plantations, secondary forest, soil and roads (Table 2). The complete LULC classifi-
cation can be downloaded from https://github.com/JonathanVSV/U-netR (accessed on
26 April 2021).

Table 2. Area estimates and F1-score obtained for the U-net ensemble classification, as well as the unbiased area and 95%
confidence intervals for the area occupied by each class. CI: confidence intervals.

Class

U-Net Study Area LULC Classification Accuracy
Assessment

U-Net
Validation

Dataset
Area Estimates

Area (ha) Proportion of
Study Area (%) F1-Score F1-Score Unbiased Area 95% CI

Aquatic vegetation 467.06 0.21 0.70 0.15 6184.96 3848.47
Grassland/Agriculture 84,572.15 38.03 0.79 0.78 76282.87 6516.50

Human settlements 2494.09 1.12 0.94 0.87 3322.42 1082.37
Old-growth forest 93,341.09 41.97 0.87 0.86 90772.02 5449.89

Old-growth plantations 8076.54 3.63 0.56 0.62 7511.87 3233.03
Roads 806.18 0.36 0.60 0.35 6111.42 2790.73

Secondary forest 6195.65 2.79 0.54 0.45 5824.51 2793.85
Soil 17,769.69 7.99 0.55 0.65 12,162.86 4080.16

Water 4617.35 2.08 0.96 0.96 4780.39 319.57
Young plantations 4048.08 1.82 0.31 0.11 9434.56 3823.09

Visually analyzing the probability map of the final classification, it became evident
that most of the old-growth forest areas had high probability values corresponding to the
assigned class (Figure 5). On the contrary, areas found in the limits of different LULC
classes, as well as clouded areas with recently burned areas, had low probabilities of
corresponding to the assigned class (Figure 5).

https://github.com/JonathanVSV/U-netR
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4. Discussion

In this study we showed that deep learning algorithms with combined MS and SAR
images can obtain a detailed LULC classification and discriminate among the forested
classes of interest with promising results. Although the F1-scores obtained for secondary
forests and old-growth plantations were not as high as the one of old-growth forests, the
MS + SAR U-net indeed provided an increase between 0.08 and 0.25 in comparison with
other tested methods (i.e., MS U-net, SAR U-net or MS + SAR RF). Thus, these results
show that new classification methods can improve the capabilities of performing LULC
maps from remote sensing information; however, they might still not meet the desired
accuracies. It is worth mentioning that our results are relative to the comparisons made
in regard to the type of images used (Sentinel-1 and Sentinel-2), as well as the algorithms
compared (U-net and RF) and to the LULC classification system used. Future studies
could help determine the difference in accuracy to perform LULC classifications in other
study areas, with different LULC systems and comparing it with different supervised
classification algorithms.

4.1. Algorithm Selection

Our results clearly showed the advantages of using deep learning methods, such as
U-net, over traditional machine learning approaches, such as RF in LULC classification.
The avgF1-score and accuracy obtained with the MS + SAR U-net was 0.15 and 0.23 higher
than its RF equivalent (Tables A1 and A4). Additionally, 9 out of 10 classes obtained
higher F1-scores in the MS + SAR U-net, in comparison with its RF counterpart, due to the
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inclusion of features in the spatial domain. Previous studies comparing RF with a deep
learning algorithm for mapping applications have reported similar outcomes [42,90–95].

Comparing the results obtained for each class of the MS + SAR U-net and its RF
counterpart, three notable cases were detected. The first one consisted of classes that
showed higher F1-score using the U-net, while its RF counterpart obtained ∆F1-scores
between 0.08–0.19 (Table 2). Most classes are included in this category (i.e., all classes
except human settlement, water and young plantations); thus, the identification of these
classes benefited from including information of the spatial domain. However, most of
the potential to correctly identify these classes seems to derive from the spectral domain
(Figure 6).
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The second case refers to human settlements which shows that incorporating the
spatial domain clearly boosted the performance for its identification (∆F1-score = 0.58;
Table 2). Because individual pixels corresponding to human settlements can have very
different reflectance responses (e.g., buildings, trees, grassland: Figure 6), its correct detec-
tion strongly benefits from the information available in the spatial domain. Thus, using
the U-net clearly outperforms the results obtained by RF, which essentially relies only on
spectral information.

The third case consisted of two classes, water and young plantations, where the ∆F1-
score between U-net and RF was minimal (Table 2). For the water class, because it is easily
differentiated using spectral or backscattering information (Figure 6), including the spatial
domain features only cause a minimal increment in its correct detection. In the case of
young plantations, MS + SAR U-net and RF obtained the same F1-score. Thus, this class
does not benefit from the spatial features of the image. We further discuss this topic in the
Error analysis section.

4.2. U-Net: Imagery Input
4.2.1. Class Patterns

Among the different U-net architectures, the one that included MS + SAR as image
input gave the highest avgF1-score; however, MS gave almost equally accurate results.
This means that the classification capabilities of the MS + SAR U-net derive mainly from
the MS imagery. This result is similar to previous studies, where using a combined input of
MS + SAR outperforms the results obtained separately with MS or SAR to perform LULC
classifications or detect LULC changes [52,96–99].

When comparing the F1-scores obtained for each class using the MS, SAR and
MS + SAR U-nets, we discovered five different groups of responses. The first one was
characterized by a lower F1-score in the MS + SAR U-net in comparison with the MS one
(Table 1). Roads was the only class found with this type of response. Because this class
consists of narrow lines of pixels, its classification is easier done using only the MS data,
which has the finest spatial resolution.
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The second group of classes were those that obtained intermediate to high F1-scores,
and obtained higher scores with MS + SAR than only MS or SAR. The two classes in this
category were old-growth plantations and secondary forest (Table 1). This was probably
due to the ability of SAR data, in this case the Sentinel-1 C-band, to slightly penetrate the
canopy cover and acquire information about the geometric arrangement and texture of
the old-growth plantations and secondary forests. As previous studies have shown, the
use of SAR bands in addition to MS help discriminate old-growth plantations from forests,
particularly when the temporal dimension is included [10,11]. Although the penetration of
Sentinel-1 C-band is not as deep as those from L or P band [100], this information aids in
the correct detection of plantations or secondary forest, particularly when used with the
MS set.

The third group consisted of classes where the F1-score difference between MS and
MS + SAR was negligible (∆F1-score ≤ 0.01; Table 1). Most LULC classes showed this
pattern: grassland/agriculture, human settlements, old-growth forest, soil and water. For
these seven classes, it was evident that MS bands gave the U-net most of its abilities to
correctly classify them; thus, adding the SAR band did not substantially improve the
F1-score for these classes.

The fourth corresponded to the water class, where its F1-score was very similar among
the three U-nets with different imagery inputs (Table 1). This seems to be related to the
particular spectral signal of water, which makes it easily distinguished with either MS or
SAR signals (Figure 6). A similar conclusion was reached in the comparison between U-net
and RF.

The last one refers to two classes, aquatic vegetation and young plantations. Although
its F1-score was higher for the MS + SAR U-net than the MS U-net, its F1-score was low
(0.11–0.15). Therefore, we concluded that the U-net had small capabilities of identifying
these two classes. We further discuss this topic in the Error analysis section and in the
complete study area accuracy assessment.

4.2.2. Hyperparameters Exploration

The exploration of different hyperparameters of the U-net showed that although the
different combinations of hyperparameters affect the overall accuracy and avgF1-scores,
the magnitude of its effect is limited to a 0.05 and 0.11 interval difference between the
highest and lowest scores (Table S1). The three most accurate U-nets trained with different
imagery inputs tended to consist of relatively simple architectures (two-three hidden
layers). This result may be related to the relatively small dataset with which the U-net was
trained. Previous studies have reported that CNN with a larger number of filters or hidden
layers are capable of identifying more complex patterns; thus, capable of resolving more
complex tasks with higher accuracy [27,30,101]. Nevertheless, when a limited training set
is available, such as the one used in this study, the main problem with these architectures
is that they tend to overfit. Thus, choosing simpler architectures reduces the chances of
overfitting although it might limit the abstraction capabilities of the CNN [31,47,102].

4.3. Error Analysis

The incorrect discrimination of certain classes by the U-net consisted of five possibili-
ties: (1) similarity in spectral/spatial information, (2) a similar conceptual class definition,
(3) spatial errors probably caused by the U-net architecture, (4) small number of observa-
tions and (5) possible errors in the training data caused by the date difference in the VHR
images. The first three were related to a limitation in the spatial resolution of the Sentinel-1
and Sentinel-2 images.

The first case was the most dominant source of confusion. Although the field data and
VHR images helped determine the LULC of each polygon, the resolution of the input im-
ages (10 m) was too coarse to distinguish certain classes [49]. For example, regardless of the
imagery used to train the U-net, at 10 m resolution, very young plantations (mainly rubber
and oil palm) cannot be distinguished from herbaceous cover (grassland/agriculture) or
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plantations at an intermediate growth stage with relatively larger individuals are practi-
cally indistinguishable from old-growth plantations (Table A5). On the other hand, most
errors among the tree-dominated classes can be related to this type of confusion, where
old-growth forests and plantations, as well as secondary forests, have very similar spec-
tral/spatial signals (Table A5). This source of confusion was also evident in the error
assessment procedure performed on the training dataset without having access to the
field registered data, which obtained an accuracy of 0.85. This procedure showed that
certain errors could be associated with the visual interpretation and that for certain classes,
such as young plantations, the field data was essential to correctly classify these areas.
Considering the insights provided by previous studies [103], the error associated with each
LULC would likely increase in comparison with the ones reported here. Thus, the use of
multiple interpreters (at least three) could help reduce visual interpretation errors [103].

The second circumstance is closely related to the arbitrary decisions that had to be
made to manually classify the training and validation datasets, particularly to define LULC
classes limits. Although the same guides and criteria were followed to manually classify
the training and validation data, in some cases, both the conceptual and physical limits
between certain classes were not completely clear. For example, the delimitation of water
bodies and sand banks (i.e., soil) or any vegetated class and roads, where the limits were
established mainly on mixed pixels which corresponded to neither one class nor the other.
Thus, a small amount of error can be attributed to these decisions.

A third case was related to a border effect in the LULC predictions caused by the U-net
design. When analyzing the probability of each pixel corresponding to each class, low
probability values tended to concentrate on the border of each class polygons (Figure 5).
Admittedly, this aspect could be related to the arbitrary decisions on the limits of the classes;
however, it is also associated with the effect of down- and up-sampling filters in the U-net,
which cause a degradation in the spatial resolution of the image in each pass. Although
the U-net foresees this aspect, by using the skipped connections to add spatial detail to
the final result, it might not be enough to provide results with the same resolution as the
original input, as previous studies have reported [40,44,95,104]. Thus, as confirmed by
the verification of the LULC classification in the complete study area, certain errors were
associated with the limits of the polygons, either by an increased size of the polygon in the
classification in comparison with the input images (e.g., larger clouds) or by a small spatial
offset of the borders of the polygons (e.g., limits between roads and plantations).

The fourth condition could help explain the low accuracy observed for identifying
rare classes such as aquatic vegetation or young plantations. Although CNN are capable of
identifying rare classes, the number of observations in the training data might have been
too small for the CNN to correctly extract general patterns to identify this class [49]. Never-
theless, the case of aquatic vegetation is further discussed in the final part of the discussion.

Finally, another minor source of error might reside on the difference in acquisition date
of the VHR imagery and the Sentinel-1 and Sentinel-2 used to obtain the LULC classification.
In most cases, this date difference was negligible, but for three points in the accuracy
assessment procedure, the U-net predicted young plantations as its LULC class; however,
no VHR information was available to help identify these areas as young plantations or
not. In these rare cases, the areas were manually classified as grassland/agriculture or soil,
depending exclusively on the Planet and Sentinel-2 images. Although this might be a very
small source of error, a sparse annotations approach can help reduce this error because not
all the areas included in the training data need to be labeled [95].

4.4. Comparisons with Similar Studies

Although, the overall F1-score and accuracy reported in our LULC classification is
admittedly lower than previous LULC studies using the U-net [42–49,73,91,94,95,105–107],
this difference can be easily explained by the combination of three factors: (1) a much
more detailed classification system, (2) a much coarser spatial resolution imagery and (3) a
smaller number of observations in the training set.
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In the first case, other studies have used simpler classification systems for which the
discrimination is easier to achieve (e.g., forest/nonforest systems) [43,45,47]. Although,
these studies had different research interests, the spectral and spatial discrimination of the
LULC classes will also affect the performance of the deep learning algorithm to solve certain
tasks (Figure 6). Other studies have tackled this problem by using hierarchical classification
systems and calculating the performance of the algorithm on each level [49]. A similar
approach could be adopted in our classification system to obtain broader classes with
higher F1 scores, e.g., a single plantations or forest class, instead of separating old-growth
and young ones.

In the second situation, other studies have mainly relied on VHR imagery (e.g., World-
view or aerial images) to obtain higher accuracy (e.g., Worldview, aerial
images) [41,42,45–47,73,91,105–107]. This type of imagery allows a better discrimination
of LULC classes, in comparison with high or intermediate resolution imagery, by provid-
ing more detailed information; thus, the potential of the U-net is limited by the spatial
resolution of the input imagery [19,31,41]. For example, in this study, the use of VHR
imagery would have helped in distinguishing poorly identified classes such as young
plantations and roads. In addition, other studies have enhanced the potential of the U-net
by incorporating the temporal dimension into the convolutional filters [44,95], fusing mul-
tiresolution inputs [94] or using customized U-net architectures [51]. These alternatives
might be interesting for future studies interested in performing LULC classification with
the U-net architecture.

In the third circumstance, it is frequently mentioned that the full potential of deep learn-
ing algorithms is especially evident when there is a large volume of training data [28,30].
Nevertheless, frequently in Earth observations applications the data available for train-
ing are limited, due to the large quantity of time and resources required to obtain this
data [20,37]. Therefore, it is not surprising that augmentation techniques are frequently
used. For example, other studies have used more aggressive augmentation techniques,
such as rotation in different angles (90◦, 180◦, 270◦), as well as brightness, saturation and
hue alterations [41,42,46]. Although augmentation techniques might enhance the gener-
alization capabilities of the algorithm, they are usually computationally expensive, and
therefore, they need to be adjusted to the available resources. In this case, we opted for
an augmentation scheme that enabled a fast training with the available computational
resources, mainly to shorten the hyperparameter exploration procedure.

Previous studies have relied on transfer learning to compensate for the small size of the
available training set to obtain higher accuracies with deep learning algorithms [35,108,109].
In this case, we did not use transfer learning because we included NIR and two SAR bands,
while most pre-trained CNN use exclusively RGB imagery. Additionally, many of the pre-
trained CNN use images with very different viewing geometry, resolution and classification
systems than remote sensing ones [20,101]. Thus, we opted to train the U-net with only
our training data.

Although it is clear that these three factors play a role in determining the performance
of the U-net, the interactions among them are unclear. Future studies should address this
topic in order to understand the effects of each factor over the classification performance.

4.5. Methodological Highlights

We consider that the use of the accuracy assessment protocol developed by [86,87] is a
relatively common approach used to assess the accuracy of a map; however, in studies that
use deep learning algorithms, it is rarely used (but see similar approaches in [41,42]). We
are aware that if the verification set is large enough, with a random spatial distribution in
the study area and has not been exposed to the CNN during the training phase (i.e., such
as in the early stopping procedure), it should give similar estimates to the ones obtained
by the abovementioned protocol. Nevertheless, a comparison of the F1-score obtained
for each class in the validation and accuracy assessment procedures evidenced that for
three classes—aquatic vegetation, roads and young plantations—its ∆F1-score was higher
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than 0.2 (Table 2). This large difference in the F1-score can be related to two situations
that artificially inflated the error for these three classes: (1) their small sample size in the
validation dataset, and (2) their spatial location in the validation dataset.

In the first case, the effect of inflating the error to identify a class seems to be clearer in
the rare classes, probably due to its limited number of observations. Because the validation
data come from an augmented procedure, the data are not completely independent; thus,
many observations are in fact a mirrored or a subsample of another. A direct consequence
of this condition is that if a pixel was wrongly classified in one sample, it will be probably
classified wrongly in an augmented version; thus, the F1-score obtained in the validation
procedure can be artificially decreased, in comparison with the one obtained for the
accuracy assessment procedure (0.20 ≤ ∆F1-score ≤ 0.25).

In the second situation, after comparing the F1-score obtained for the validation and
accuracy assessment procedures for aquatic vegetation (∆F1-score = 0.55), it was evident
that another factor was also responsible for the large difference. Thus, we noticed that
aquatic vegetation class was systematically found in edges of the validation data, an aspect
that was overlooked in the training and validation data acquisition. Therefore, due to its
location in the edges of the validation dataset, the U-net obtained low quality predictions
for this class, which inflated the error calculated for this class in the validation dataset in
comparison with the accuracy assessment procedure.

We consider that the accuracy assessment results give a more precise estimate of the
precision of the U-net to obtain LULC maps because they evaluate the classification over
the complete study area and reduce the error caused by the low-quality predictions in the
edges of the tiles. In addition, using this protocol allows obtaining an estimate of each class
surface with confidence limits. Thus, we recommend future studies to use similar protocols
to evaluate LULC maps.

Finally, it is worth mentioning that we opted for making a LULC map using a single
date image to maximize the agreement between the field information and the MS image
(as SAR images do not detect clouds) in a very dynamic landscape, instead of maximizing
LULC coverage. Although other studies have addressed this issue by using multitemporal
composites, few studies have analyzed the effect of the image composition over the abilities
of an algorithm to perform the LULC classification task (but see [110,111]), less still using
CNN-based algorithms. These studies report that better classification accuracies are usu-
ally obtained with composites constructed from images acquired inside a small temporal
window (e.g., a season within a year). Nevertheless, in areas with high cloud coverage
throughout the year, as the one studied here, even using multitemporal composites might
not ensure a high-quality composite or a complete study area coverage. Future studies
should address this trade-off between temporal agreement and study area coverage, espe-
cially using CNN-based algorithms that consider the spatial context of a pixel to determine
its class.

5. Conclusions

The use of CNN for Earth observation applications has further improved the capabili-
ties to generate detailed LULC classifications. Nevertheless, it is essential to evaluate the
role of different imagery inputs and algorithms in LULC mapping with special focus on
discriminating among forested classes. In this study we found that although we trained
the U-net with a small dataset, it outperformed the random forests algorithm. Additionally,
the LULC map with the highest accuracy was achieved using the U-net with the MS + SAR
bands as inputs, followed very closely by MS U-net and lastly by SAR U-net. Furthermore,
MS + SAR U-net obtained higher F1-scores for similar LULC classes such as old-growth
forests and plantations. We conclude that the better performance of the U-net, in com-
parison with the RF, is mainly because of the incorporation of the spatial and spectral
features in the LULC classification. In addition, the combined use of MS + SAR imagery
helps in obtaining a detailed LULC map and especially in discriminating among forested
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classes. This study demonstrates the capabilities of CNN for obtaining detailed LULC
classifications with medium spatial resolution satellite images.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13183600/s1, Table S1: U-net Hyperparameter exploration results.
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Appendix A

Table A1. Confusion matrix for the validation set using the MS + SAR U-net. Rows show predicted classes while column,
ground truth classes. LULC abbreviations: AV, aquatic vegetation; G/A, grasslands/agriculture; HS, human settlements;
OF, old-growth forests; OP, old-growth plantations; R, roads; SF, secondary forest; So, soil, W, water; YP, young plantations.
User acc stands for user’s accuracy, while Prod acc for producer’s accuracy.

AV G/A HS OF OP R SF So W YP User acc

AV 594 115 0 240 0 0 0 0 0 0 0.63
G/A 0 902,138 11,583 35,162 25,472 23,834 64,813 88,484 322 22,190 0.76
HS 0 6917 159,892 627 1278 2810 2010 1926 0 13 0.91
OF 6001 55,782 5081 1,372,026 116,552 3245 68,833 3980 1595 3938 0.82
OP 0 22,157 238 26,673 246,789 3790 15,303 1667 128 26,695 0.72
R 0 8587 3488 895 2364 21,636 986 10,066 0 653 0.44
SF 0 67,145 8288 67,390 49,581 2463 143,531 1287 0 5531 0.41
So 21 48,149 1745 3046 1413 12,314 1363 181,030 1041 2280 0.69
W 170 855 1 775 44 0 9 272 59,215 0 0.97
YP 0 8338 197 164 12,528 927 1104 2668 0 5159 0.17

Prod acc 0.09 0.80 0.84 0.91 0.54 0.30 0.48 0.61 0.95 0.08
Overall accuracy 0.76

Batch avgF1-score 0.72
Overall avgF1-score 0.58

https://www.mdpi.com/article/10.3390/rs13183600/s1
https://www.mdpi.com/article/10.3390/rs13183600/s1
http://lae.ciga.unam.mx/proyectos/geomatica/index.php
http://lae.ciga.unam.mx/proyectos/geomatica/index.php
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Table A2. Confusion matrix for the validation set using the MS U-net. Rows show predicted classes while column, ground
truth classes. LULC abbreviations: AV, aquatic vegetation; G/A, grasslands/agriculture; HS, human settlements; OF,
old-growth forests; OP, old-growth plantations; R, roads; SF, secondary forest; So, soil, W, water; YP, young plantations.
User acc stands for user’s accuracy, while Prod acc for producer’s accuracy.

AV G/A HS OF OP R SF So W YP User Acc

AV 397 327 0 25 8 0 62 0 0 0 0.48
G/A 109 945,076 12,870 38,984 58,029 24,740 105,371 103,450 45 33,760 0.71
HS 0 8727 171,136 1782 4255 5038 4903 5070 0 130 0.85
OF 5497 57,945 2401 1,386,121 136,575 3906 71,614 3827 324 14,346 0.81
OP 1 23,140 381 34,138 206,132 2072 23,195 1857 0 10,017 0.68
R 0 7045 1256 1393 1861 26,717 1382 11,403 0 561 0.52
SF 317 43,758 1888 43,919 45,045 870 89,761 338 1 5930 0.39
So 13 32,971 771 1631 899 8216 768 162,686 536 697 0.76
W 451 1104 0 916 82 0 38 409 61,225 0 0.95
YP 0 2316 1 171 3178 129 368 1180 0 1001 0.12

Prod
acc 0.06 0.84 0.90 0.91 0.45 0.37 0.30 0.55 0.98 0.02

Overall accuracy 0.76
Batch avgF1-score 0.72

Overall avgF1-score 0.55

Table A3. Confusion matrix for the validation set using the SAR U-net. Rows show predicted classes while column, ground
truth classes. LULC abbreviations: AV, aquatic vegetation; G/A, grasslands/agriculture; HS, human settlements; OF,
old-growth forests; OP, old-growth plantations; R, roads; SF, secondary forest; So, soil, W, water; YP, young plantations.
User acc stands for user’s accuracy, while Prod acc for producer’s accuracy.

AV G/A HS OF OP R SF So W YP User Acc

AV 0 0 0 0 0 0 0 0 0 0 0.00
G/A 1 944,129 26,365 115,271 50,653 48,227 103,875 199,658 124 33,311 0.62
HS 0 14,585 79,076 19,238 23,998 2662 7312 5583 0 3997 0.51
OF 6561 150,845 70,460 1,512,101 183,508 13,216 138,688 24,125 1727 6467 0.72
OP 1 25,098 12,542 36,230 182,438 6766 14,267 12,689 64 17,395 0.59
R 0 103 16 1 32 7 1 30 0 6 0.04
SF 0 41,897 2610 50,157 18,848 2383 48959 2739 0 2351 0.29
So 1 16,572 514 2610 2725 1690 1030 60,535 552 2876 0.68
W 222 1014 0 1291 25 0 4 3088 59,834 0 0.91
YP 0 2382 150 77 2014 202 201 463 0 203 0.04

Prod acc 0.00 0.79 0.41 0.87 0.39 0.00 0.16 0.20 0.96 0.00
Overall accuracy 0.65

Batch avgF1-score 0.57
Overall avgF1-score 0.39

Table A4. Confusion matrix for the validation set using the MS + SAR random forests. Rows show predicted classes while
column, ground truth classes. LULC abbreviations: AV, aquatic vegetation; G/A, grasslands/agriculture; HS, human
settlements; OF, old-growth forests; OP, old-growth plantations; R, roads; SF, secondary forest; So, soil, W, water; YP, young
plantations. User acc stands for user’s accuracy, while Prod acc for producer’s accuracy.

AV G/A HS OF OP R SF So W YP User Acc

AV 551 3068 133 19,409 615 22 3474 6 0 174 0.02
G/A 16 93,773 2459 3373 1220 1385 5325 6354 12 1725 0.80
HS 2 10,147 9104 1760 539 1512 1185 2672 0 266 0.28
OF 296 1180 322 121,083 12,033 29 4389 10 0 411 0.85
OP 56 2552 1451 17,256 23,980 129 4370 126 1 2065 0.46
R 0 12,179 6247 525 620 5367 627 7774 3 229 0.15
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Table A4. Cont.

AV G/A HS OF OP R SF So W YP User Acc

SF 56 20,566 2804 37,231 13,487 470 24,686 288 0 2146 0.24
So 6 12,449 2015 322 244 1110 162 26,977 8 542 0.59
W 73 439 1 215 16 0 67 127 8542 4 0.90
YP 1 19,031 4343 3747 6912 933 3381 3575 0 3211 0.07

Prod acc 0.49 0.53 0.30 0.58 0.40 0.48 0.51 0.55 0.99 0.29
Overall accuracy 0.53

Batch avgF1-score -
Overall avgF1-score 0.43

Table A5. Confusion matrix resulting from the accuracy assessment procedure of the complete study area LULC classification
obtained with the MS + SAR U-net. Rows show predicted classes while columns, ground truth classes. LULC abbreviations:
AV, aquatic vegetation; G/A, grasslands/agriculture; HS, human settlements; OF, old-growth forests; OP, old-growth
plantations; R, roads; SF, secondary forest; So, soil, W, water; YP, young plantations. User acc stands for user’s accuracy,
while Prod acc for producer’s accuracy.

AV G/A HS OF OP R SF So W YP User Acc

AV 15 0 0 3 0 0 0 0 0 0 0.83
G/A 3 100 0 4 2 1 1 5 0 5 0.75
HS 0 0 22 0 0 0 0 0 0 0 1.00
OF 4 2 0 113 2 0 2 0 0 0 0.88
OP 0 1 0 4 18 1 3 0 0 9 0.46
R 0 0 1 0 1 12 0 0 0 0 0.80
SF 2 9 0 5 1 1 18 0 1 1 0.44
So 0 5 1 1 0 10 0 20 0 4 0.42
W 0 0 0 0 0 0 0 0 23 0 1.00
YP 1 3 1 0 1 0 0 0 0 6 0.46

Prod acc 0.60 0.83 0.88 0.86 0.72 0.48 0.72 0.80 0.92 0.24
Overall accuracy 0.77

Batch avgF1-score -
Overall avgF1-score 0.68
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