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Abstract Formation control is one of the most important
issues of group coordination for multi-agent robots
systems. Some schemes are based on the leader-
followers approach where some robots are considered
as group leaders which influence the group behaviour.
In this work, we address a formation strategy using a
virtual leader which has communication with the rest of
the follower robots,
robots. The virtual leader approach presents advantages
such as analysis simplification and fewer sensing
requirements in the control law implementation. The
formation control is based on attractive potential
functions only. The the
convergence to the desired formation but, in principle,
does not avoid inter-agent collisions. A set of necessary
and sufficient non-collision conditions based on the
explicit solution of the closed-loop system is derived.
The conditions allow concluding from the initial
conditions whether or not the agents will collide. The
results are extended to the case of unicycle-type robots.

considered as omnidirectional

control law guarantees

Keywords Formation control, Multi-agent robots
systems, Artificial Potential Functions, Non-collision,

Unicycles
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1. Introduction

Multi-agent robots systems (MARS) are understood as
groups of autonomous robots (called agents) coordinated
to achieve cooperative tasks. The range of applications
includes toxic residue cleaning, transportation and
manipulation of large objects, exploration, search and
rescue, and simulation of biological entities’ behaviours
[1]. The research areas of MARS encompass motion
coordination, task assignment, communications, sensor
networks, etc. [2]. Formation control is an important sub-
area of motion both to
omnidirectional and mobile wheeled robots. The goal is
to guarantee the convergence to a particular formation
pattern avoiding inter-agent collision at the same time [3,
11]. The problem is complex because it is assumed that
the agents have a limited sensing capacity and no robot
possesses global information about the position of all
robots. Therefore, the control strategies are decentralized
and the main intention is to achieve the desired global
behaviours through local interactions [13].

coordination. It refers

Different schemes of formation control exist [4, 5]. Some
schemes consider all agents with the same capacities and
achieve formation patterns, without a specific position,
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following some such as

neighbours-rules,

simple behaviour rules
swarm physics-based
techniques, etc. [5, 6, 7, 8]. Other formation schemes are
based on formation graphs which represent specific inter-
agent communication channels to achieve a specific
geometric pattern [9, 10, 29]. Some tools of graph theory
and linear systems are used to prove the convergence to

intelligence,

the desired formation for special formation graphs such
as the complete formation graph (i.e., where every agent
measures the position of the rest of the group [18]), cyclic
pursuit [13], undirected graphs [21], leaders-followers
graphs (i.e., where all robots have communication with
one or more group leaders [11, 12]), etc. In this paper, we
utilize a formation graph where one agent is considered
as a virtual leader. Some advantages of the use of virtual
leaders are the simplification of the analysis and best
performance of the closed-loop system. Some important
works about virtual leaders are [14, 15, 16].

The non-collision problem is generally solved using the
negative gradient of an artificial potential function [17]. In
the standard methodology, this function is the sum of
Attractive (APF) and Repulsive Potential Functions (RPF).
The APF are designed according to the desired inter-
agent distances of a particular formation, whereas RPF
serve to create repulsive forces to avoid collisions. In
decentralized strategies, these RPF appear only when the
minimum allowed distance between agents is violated. A
formation control law based on APF only, guarantees the
convergence to the desired formation, but inter-robot
collisions could occur for some initial conditions. A
formation control law based on the sum of APF and RPF
guarantees non-collision, but does not
convergence to the desired formation for all initial
conditions. This occurs because the robots can be trapped
in undesired equilibrium points. The analysis to calculate
these equilibria and the trajectories which do not
converge to the desired formation is very complex [18]. A
complete survey of convergence and collision avoidance
based on APF and RPF was presented in our previous
work [28].

ensure

Some research on the analysis of non-collision based on
repulsive forces also exists. In [18], it is shown that the
undesired equilibria are unstable for a complete graph
formation strategy, however, they are not explicitly
calculated. In [19, 20], some “navigation functions” are
designed with attractive and repulsive behaviour.
However, the RPF are centralized and high-order
functions, i.e., every agent needs to be fed back with the
position of the rest of agents. The main disadvantages are
that the system is no longer decentralized and the
approach requires a high computational cost in real-time
implementations. In [21], a general form of decentralized
RPF approach applied to undirected formation graphs is
obtained, showing the complexity of the analysis for the
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general case. However, the analysis of convergence to the
desired formation assumes that the basin of attraction of
the undesired equilibria and the set of admissible initial
conditions are disjointed. Other attempts to achieve
global convergence without collisions in formation
control include: hybrid architectures where a high-level
supervisor switches momentarily to reactive non-collision
strategy [30], the use of small disturbances in order to
escape from undesired equilibria which exhibit a saddle
point behaviour [31] and the use of discontinuous
repulsive fields [32]. Despite successful
implementations, the repulsive forces are heuristically
designed and therefore, formal proof about global
convergence are rarely found (for example [33]).

vector

Instead of using the mix of APF and some type of
repulsive forces, in this paper a simple formation strategy
based on APF only is used. Then, our main result is to
obtain necessary and sufficient non-collision conditions
based on the explicit solution of the closed-loop system.
The main idea is to predict, from the initial positions,
whether or not the agents will collide. Doing this, the
convergence and the non-collision requirements are
satisfied in a subset of initial conditions within the
workspace. Preliminary results for the case of another
formation strategy for three agents only were reported in
[22]. In this paper, the non-collision conditions and their
geometric interpretation are generalized for the case of
any number of agents formed with respect to a virtual
leader. A related result reported in the literature is [13],
where non-collision conditions are obtained for the case
of point robots formed in a cyclic pursuit graph. Roughly
speaking, if the arguments of the polar coordinates of the
initial conditions of the robots define a strictly increasing
sequence, then the robots will not collide for any time
instant.

The paper is organized as follows: Section 2 introduces a
formal problem statement. Section 3 describes the
formation control strategy for agents, considered as
points in plane, using APF; also, convergence to the
desired formation is demonstrated. In Section 4, non-
collision conditions are derived. The result is extended to
the case of unicycle formations in Section 4.1. Section 5
presents numerical simulations. Finally, concluding
remarks are offered in Section 6.

2. Problem statement

Denote by N={R,,..,R }, aset of n agents moving in
the plane with positions z (t)=[x,(t),y,(#)]", i=1,...n-
The kinematic model of each agent or robot R is

described by
Zi:ul‘a izl)"'ana (1)
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where u, = [”m”iz]T e R? is the velocity along the X and
Y axis of i-th robot. Let N, denote the subset of
positions of the robots which are detectable for R. . In this

paper, the subsets N, are defined by

N, ={z }, i=1.,n-1 @
N, =lz,,..,z

127 %n-1

The last agent R is considered as the group leader and

the rest are follower robots. The agent R has more

sensing capacities because it can sense the position of all

followers. We assume that Rn is virtual, i.e., this agent

does not exist as a real robot but can be represented or
emulated by a computer. Let ;= [hﬁ’vﬁ]T denote a
vector which represents the desired position of R with
respect to R]. in a particular formation. Thus, we define
z = f(N,_), i=1,..,n as the desired relative position of

every R in the formation given by

zi=z +c,i=1..,n-1 (3)
. 1 n-1 (4)
Zn :E;[zi+cm)

The desired relative position of the group leader can be
considered as a combination of the desired positions of
z, with respect to every follower in the group. The

formation strategy using Rn as virtual leader is shown in

Fig. 1. This formation can be considered as a star
formation centred at the virtual leader. In plain words,
the goal of each agent R/ i=1,..,n—1 is to be steered to

a relative position ¢ . with respect to the virtual leader

avoiding collisions.

Figure 1. Formation Control Strategy using a virtual leader

www.intechopen.com

Note that the positions of robots and the vectors ¢ . are

defined with respect to a global frame. Other works
consider either the desired positions of robots using local
frames [24, 25] or the relative distances and orientations
between robots [11, 26, 27].

Problem Statement The control goal is to design a control
law 4 (t)=g (N,t)) for every robot R, such that
lz,(H)-z,(t) II>d,

Vt20, i#], i,j#n where d is the diameter of a circle

lim,  (z,-z)=0, i=1..,n and

that circumscribes each robot.

Remark 1. It is important to observe that the collisions
between the leader and every follower are not analysed
because they do not occur in the physical world. Thus, we
only analyse the collisions between followers.

Remark 2. The star-shaped topology shown in Fig. 1 has
been chosen because it renders symmetric expressions for
the distance between any pair of agents. Another
topology rendering the same kind of symmetry is the so-
called undirected complete graph [18], where every agent
detects the position of the rest of the agents. We have
chosen the former topology because it requires less
communication channels between agents.

For completeness of the paper, let us introduce the
following definition.

Definition 1. The desired relative position of 5 mobile
agents given by (3)-(4) is said to be a closed-formation if

=— ,Vi=1..n-1. )

in ni’

3. Control strategy

In this section, a formation strategy is presented which
ensures the convergence to a desired formation only. The
collision problem will be analysed in Section 4. For
system (1), local potential functions are defined by

_ 2
V.alz,—z,—c, I i=1,..

1

n-1 )
‘/n = ZH Zn _Z]' _Cjn ”
j=1

,n—1

(6)

The functions . are positive definite and reach their global
minimum (VI =0) when Z,—z;=C; i=1..,n, jeN..

Using these functions, we define a control law given by

T
u.:—lk v, i=1..
! 2 | 0z

T
L1 (o,
" 2n-1)" | oz,

where k>0 is a design parameter.

n-1
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Theorem 1. Consider the system (1) and the control law

(7). Suppose that k>0 and the desired formation is

closed. Then, in the closed-loop system (1)-(7) the agents

converge exponentially to the desired formation, i.e.,

lim,  (z,-z)=0,i=1..,n-

Proof: The closed-loop system (1)-(7) has the form
z=k(M®IL,)z+c), ®)

where z=[z,,..,2, ]T, ® denotes the Kronecker product,

n-1 T
I, is the 2x2 identity, €=/ C,ypseeesCoiy i Doiy ci,,} and

-1 0 0 - 0
0 -1 o - 0 1
M=| °
0 0 0 -1 1
o1 1 LY
Ln—-1 n-1 n-1 n—-1

A change of coordinates for the closed-system (8) is
defined by

{;}:(Q(@Iz)z—cq, ©)

T T
where e=[e,,....e, ], ¢ :[cnl,cnz,...,cn(H),O] and

- q

0 o - 0 -1

1 o - 0 -1

0=| ° . ’
0 0 0 1 -1
B T
Lln—-1 n-1 n-1 n—1 ]

We observe that e, =z, _z;,', i=1,..,n—1 are the error

coordinates of the first n—1 agents. The variable ¢ does
not have a physical interpretation but serves to complete
the change of coordinates.

The dynamics of the coordinates (9) are given by

ol g

~ x1 ~ _ -
where ¢, € R and M € R have the form

L |
-1 —=n -1 -+ -1 -1
- 1 . . :
M= : : g
n—-1
-1 -1 -1 -~ —n -1
__1 -1 -1 -~ -1 -n
1 B n-1 n-1 !
517 = _Z (Cin + Cni)"“’ Z (Cin + Cni):| :
n-1 L =1 i=1
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Due to condition (5), ¢ = 0. Then, the dynamics of the

new coordinates are given by

We observe that 9=0
coordinates (10) are reduced to dimension n—1. The

and the dynamics of the

equilibrium point of the system (11) is ¢ =0. The matrix
M is clearly Hurwitz because it has n—2 eigenvalues
equal to —1 and one eigenvalue equal to —2. Therefore,
the trajectories of e, i=1,.,n—1 converge exponentially
to zero. This means that the first n—1 agents converge to
the desired relative position in the formation. Now, let us
analyse the position of z at the equilibrium point. Fig. 2
shows the positions of all agents when e, i=1..,n-1

converge to zero. Due to condition (5), we deduce that

Y ==C; =€y j=l..,n-1. Thus, ¢, =0, i=1,..,n-1
implies that z, = z;- Then, we conclude that all agents
converge to the desired formation. n
Tin
Cni Ton
L4
Cn2

Figure 2. Positions of agents at equilibrium point.

Remark 3. Note that M is almost identical to the so-
called Laplacian Matrix [21] of the formation given by (3)-
(4). The only difference is the n — th row, due to the factor

1
2(n—1)

in the last expression of (7).

4. Non-collision conditions

The control law (7) guarantees that all agents converge
exponentially to the desired formation but inter-agent
collisions can occur starting from some initial positions.
Collision-free trajectories between follower robots are
defined by the condition

fO =t -2, >d.vi>0i%jijen (12

where d is the diameter of a circle that circumscribes
each robot.

In order to characterize collision-free trajectories, the first
step is to obtain an analytical expression of the solution of
the closed-loop system (8). Such expression is provided
by the next proposition.

www.intechopen.com



Proposition 1. Consider the closed-loop system (8). The = 1
trajectories of the agents are given by _Z (C +¢,)
A 1 =N
Ct= 1
2(t) = (BOL )z, 47 (13) -1
(n_ ) Z(Cin +Cni)
= i

where ZO=[Zw,...,ZnO]T with z,, =z,(0) represents the
agents’ initial conditions, Due to condition (5), ¢;=0. Then, the dynamics of the
new coordinates are given by

2 2
O N p=k(4,®L)p. (16)
£ St) s s (n—l)sls2
B=| : : We can diagonalize the matrix Z QI through the
R 1) (n - 1) 55, following similarity transformation
55, 55 8% v S5, (”—1)(2—5152) (D®L)=(P'®L)A,®L)P®L), (17)
2 1 where
(Z(n 2)52+s]s2]cm+52%cm ok 0 0 0 0
[2(71—2)32 +slszjc”2+s§];cjn Do 0 g 0 O 0 ’
o o 0 0 0 -k 0
: 0 0 0 0 0
(2 (n-2)s, +ss, j Cn) + 5 Z ¢,
o 2 1 0 0 0 0 0]
55,).C, 2 —(n-2) -1 -1 -1 - -1 0
el 2 1 1 0 0 0 O
P=|2 1 0 1 0 0 0]
where s, (t) =1+e ™, 5,(f)=1-¢™, 8(t)=2(n-3)e™ +s. :
2 0 0 0 0
Proof: A change of coordinates for the closed-loop system | -1 0 0 0 0 - 0 1]
(8) is defined by
Then, the solution of (15) is given by
p=(T®I,)z-c, (14)
p(t)=(PE(t)P™" ®L,)p,» (18)
where
10 0 0 -1 where p,=p(0) is the vector of initial conditions of
010 0 -1 coordinates p and
T= - -
00 0 1 -1 e 0 0 - 0 0
000 0 1 0 ¢ 0 0 0
E(t)=| : :
The dynamics in the new coordinates are 0 0 0 -~ e*™ o
p=k((A,®L)p+2). (15) Lo 00 0 1]
After some algebra, the solution in original coordinates
where can be written as in (13). u
-n -1 -1 -~ -1 0 Replacing the explicit solution of two follower agents Z;,Z;
. -1 —»n -1 - -1 0 in the condition of collision-free trajectories (12), we obtain
At = m : - N
1 -1 -1 - -n 0 z,(t)—z,(t) =52(t)[z].0 —ziOJ—[z].o —zioj (19)
1 1 1 1 0 L o
+sZ(t)(c].n +cm.],Vz,] #N,0#]
www.intechopen.com E.G. Hernandez-Martinez and E. Aranda Bricaire:
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Recalling that s, =1 —e™™ and defining a,=cp,+C, the
function ﬁj(t) in condition (12) for the case of two

followers can be written as

2
21’0 _Zio (20)

f(h=s3(b)

T 2
—252(t)(2i0 - Zioj (2j = 2) + szo ~Zjo

where 2=z, +a,, Vij=1l..,n-1, i=j is the
desired relative positions of R, with respect to Rj at

t =0. Using this notation, we establish our main result.

Theorem 2. Consider the dynamics of two agents R, and

Rj s i,j=1,...,n=1, i j of the closed-loop system (1)-(7)

and suppose that

1. k>0
20 aIP>d* i#j

2 2 ..
3. Mz =z, IP>d i#]

Then, anyone of the following three conditions is
sufficient to guarantee non-collision between the i-th and

j-th agents, i.e., fi],(t) >d?, Vi>0:

. T
i) (Zio_zioj (25 =2,)<0-
. T 2
i) (Zio_zio) (ZjO _ZiO) Z|Zi0~ Z
ii) . 2 T J
n AT >(Zi0_zi0) (ZjO —2,) >0 an
2
p,>d 1)
2 (a0l Go-z0))
Zio~Zig) (Zjo=% ) .
where Q. :Hz,O -z, —U—IUZU. Moreover, if
g Jz0=zol

fi(#)> d? then necessarily one of the conditions i)-iii) is
satisfied.
Remark 4. Hypothesis 2) means that the desired distance

between agent R, and R; must be greater than (.

Hypothesis 3) means that agents do not collide at =0.

Proof of Theorem 2: (sufficiency) Note that the function
2

5,(0e[0,1)- fi=£0) =]z, -2

fr=lim,_, f,(t)=lla, I>- By hypothesis 2) and 3)

Therefore, and

f ff > d?. The derivative of £, is given by

% fi(H)= 2ke M 5(t), (22)

Int J Adv Robotic Sy, 2012, Vol. 9, 100:2012

n(t) =

derivative of f,~j(t) vanishes only when 7(t)=0.

2 T
where S(t)—[iio_zio) (Z]'o ~Z,). The

Zio ~ Zip

i If (éiU_ZiojT(sz_ziO)SO, then p(t) is positive
and ffi(t) is monotonously increasing, therefore,
f(t)>d*, vt=0. Fig. 3 shows the initial
position of the agents in this case.

" T

ii) If (Zio—zm) (zio—zio)Z
never crosses by zero and we conclude that
£ is monotonously decreasing. Therefore,

2, then 5t)

21‘0_21'0

2 . .
f >ff and ff >d* implies that fij(t)>d2,
Vt>0. Fig. 4 shows the initial positions of the
agents in this case.

ses 2 A T
iii) If >(Zi0_ZiOJ (Zjo—Zi0)>O, then

Zio ™ Zio
7n(t) is negative, crosses by zero at time instant

¢+ and, after that, it is positive. Calculating t,

we obtain
T
P P PO 7T (Zfoz W | @)
k Zio~ Zi
Evaluating

2 ((21‘0 ~Zio )T(Zjo - Zio))z

fit)= 2 =@

Zjy = Zyp

Zio~ Zip
By condition (21), it is satisfied that fi]_(t) > d?
when n(t,)=0. The distance between agents R
and R, decreases up to time instant f . After
that, the distance becomes increasing V¢t > t,.
Therefore fly(t)>d2’ vt>0. Fig. 5 shows the

initial positions of the agents in this case.

(Necessity). It is necessary to prove that if ﬁj(t) >d?* then

necessarily i), ii) or iii) hold. Previously, we have shown
that fi’ ff > 4% and that % fi],(t) vanishes only when

n(t)=0. Because s, () is monotonously increasing, the

behaviour of ﬁj(t) falls necessarily within one of the

following cases:

1. ﬁj(t) is monotonously increasing because p(t) never

crosses by zero and remains on the positive interval.
This occurs only when condition i) is satisfied.
2. ﬁ_]_(t) is monotonously decreasing because(t) never

crosses by zero and remains on the negative interval.
This occurs only when condition ii) is satisfied.

www.intechopen.com



3. fij(t) is decreasing, crosses by zero at time instant t,

and after that, becomes increasing. This occurs only
when condition iii) is satisfied.

Remark 5. The distance between the leader and the i-th
follower, i.e., z.(t)—z,(t) 2 i=1,.,n—1 is given by

2

=, | +2¢74b]b, (24)

fuB) =

zZ.—Z
i n

a

1ni ni

+e 2K [Hb1 Hz +2bla, J +2eMpTa  +

= n=2 1 .
by =13 [Zz‘O + ainj -1 Z/ﬂ [Zjo +ajn] and

jEn
—_1 1 L _ .
b, =35 (ZiO + ainj+ 1 z;; [Zj(] + ajnj Z,9. The analysis

of the non-collision conditions for the case of the leader
and a follower is more complex, but it is not studied
because these collisions do not occur in the physical
world. However, it is an issue for further theoretical
research.

T
Figure 3. Agents’ positions in space in case [2 0~ Z,O) (z)p—2,)<0

Figure 4. Agents’ positions in space in case

T 2
(Zio_zioj (Z/o —Zp)2

21‘0_2[0

www.intechopen.com

Remark 6. Another choice of formation graph which
allows a simple explicit solution of the closed-loop system
is the so-called complete graph, where each agent detects
the position of all the others agents. This solution
produces symmetric expressions for the distances
between agents and hence allows obtaining a result
similar to Theorem 2. This result has been reported for
the case of three robots only in [22].

f<—
2
zi0
Figure 5. Agents’ positions in space in case
2 T
Zio " 2| > (ZiO - Zi()) (2j9=2,) >0

4.1 Extension to formation control of unicycles

The analysis of Section 4 can be adapted to the case of
unicycles. The kinematic model of each agent R, as

shown in Fig. 6, is given by

X cosd, 0
v,

y,|=|sin@, 0Of "|,i=1..,n (25)
w,

o) L o 1"

where v, is the longitudinal velocity of the midpoint of
the wheels axis, w, the angular velocity of the robot. It is

known [23] that the dynamical system (25) cannot be
stabilized by any continuous and time-invariant control
law. Instead, consider the coordinates a, = (pi’qi) shown

in Fig. 6. The coordinates o are given by

P, xi+€cos[19ij

q;

||z (26)

i

yﬁésin(&i)

The idea of controlling coordinates ¢ instead of the

centre of the wheels axis is frequently found in the mobile
robot literature in order to avoid singularities in the
control law [11]. The kinematics of (26) is given by

ji=1..,n 27)

where

cosf, —Ising, (28)

Al0)-

sinf,  (cos6,

E.G. Hernandez-Martinez and E. Aranda Bricaire:
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is the so-called decoupling matrix of every R . The

decoupling  matrix is  non-singular  because
det( A[a]) =(=0. Then, it is possible to impose on ¢ any

desired dynamics using the control law

=A"0)di i=1,...n (29)

sind),

_ siné, cos6,
1 4

cosd,
where A1(9i):l: ' } and ai is the desired

dynamics of coordinates ¢ .
1

Following the control strategy of Section 3, the desired
inter-agent relative positions for the n unicycles are
established by

=1 (30)

a=——3(a +c,) (31)

Figure 6. Kinematic model of unicycles.

Then, the formation control strategy is given by

NT

Oi :_lkA’l(H_] vV, i=1..n-1

w2 5 (32)
_NT

v, —_ 1 kAfl(en) %

wn 2(71—1) 60!”

where the functions {7, are similar to functions V. but

dependent on coordinates ¢ instead of coordinates z. .
1

Corollary 1. Consider the system (25) and the control law
(32). Suppose that k>0 . Then, in the closed-loop system (25)-
(32), the agents converge to the desired formation, i.e.,
lim, (o, —a])=0.

t—o0

Int J Adv Robotic Sy, 2012, Vol. 9, 100:2012

Remark 7. The control law (32) steers the coordinates a,
to a desired position. However, the angles ¢ remain

uncontrolled. These angles do not converge to any
specific value. Thus, the control law (32) is to be
considered as a formation control without orientation.

5. Numerical simulations

Figures 7 and 8 show a simulation for the closed-loop
system (1)-(7) for n=4, d=2 and k=1. The desired
relative distances are given by ¢, =[-5,01- ¢,, =[0,5] and

¢, =[5,0]- The initial conditions are given by Z, = [3,4],
2, =[4,-2], z,, =[-3,0] and 2, =[-3,-5] In Fig. 8, dij is
the distance between the follower agents i and j. In

order to check the non-collision conditions given by
Theorem 2, three couples of robots need to be considered
(from the three follower robots); namely [R,R,], [R,,R;]

and [R,,R,]- Following the calculations of Theorem 2 we

obtain the Table 1
7 =(2,-0_Zio)T(Z]-0—zio). We observe that all pairs of

results of where

agents satisfy case iii) of Theorem 2. Finding ?; and ¢,

for every pair of agents we obtain the values of Table 2.

We readily check that P> P15 > d?. Therefore, the pairs of
agents [R,,R,] and [R,,R,] do not collide. In Fig. 8, the
distances d,, and d,, decrease to some value greater than
4 at their respective time instant t and then they

increase up to the desired value. We observe that the pair
[R,,R,] collides because ¢,, < 4> at time ¢ —(.7088. The

distance d,, inFig. 8 decreases to a value less than 4. Fig.

7a shows the initial positions of the agents. Fig. 7b shows
the trajectory of agents at time of maximal proximity
between [R,R,]- Fig. 7c shows the time of collision of

agents [R,,R,]. Finally, Fig. 7d shows the position of

agents when they achieve the desired formation.

Pair (R,, R],) a; Ti Hiiu ~Zj H2
[1,2] [-5,-5] 62 137
3] [-10,0] 112 272
(2.3] [-5,5] 98 193

Table 1. Checking the non-collision conditions on simulation.

Pair (Ri , Rj) (Dij ta
[1,2] 8.94 0.6025
[1,3] 5.88 0.5306
(2,3] 3.23 0.7088

Table 2. Checking the condition iii) on simulation.
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Figure 7. Trajectories of the agents in plane.
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6. Conclusions

An analysis of non-collision conditions of a simple
formation control strategy for multi-agent robots is
presented. The formation strategy is based on a virtual
leader. This virtual leader can be emulated by a computer
or another control device and serves for the
communication between followers. The formation control
is based on attractive potential functions which only
ensure the convergence to the desired formation,
however, agents might still collide. To ensure collision-
free trajectories, a set of necessary and sufficient
conditions, based on the exact solution of the closed-loop
system, is presented. The main idea is to predict, from the
initial conditions, whether or not the agents will collide.
The virtual leader serves to calculate and simplify the
non-collision conditions. The main result has an
application in experimental work where the analysis of
these conditions can be achieved off-line and the robots
can be protected from undesired shocks. The results are
extended to the case of unicycle-type robots.

time

time

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
time

Figure 8. Inter-robot distances.
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