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This paper presents two formation tracking control strategies for a combined set of single and double integrator agents with an
arbitrary undirected communication topology.The first approach is based on the design of distance-based potential functions with
interagent collision avoidance using local information about the distance and orientation between agents and the desired trajectory.
The second approach adds signed area constraints to the desired formation specification and a control strategy that uses distance
as well as area terms is designed to achieve tracking convergence. Numerical simulations show the performance from both control
laws.

1. Introduction

The consensus problem of multiagent systems has gained
considerable interest in the research community recently. For
instance, Shang and Ye [1] proposed a leader-follower nonlin-
ear distributed control algorithm for single integrator agents,
based on local information such that the following agents
track their corresponding leaders. Higher order multiagent
systems have been studied by Wang et al. [2] using multiple
Lyapunov functions, showing that consensus can be reached
under a switching topologywithin a finite set of digraphswith
an average delay time between changes.

An extension to the consensus problem, called formation
control, studies strategies to distribute agents in geometric
patterns avoiding interagent collisions [3]. In distance-based
formation control (DFC) the agents achieve a formation pat-
tern defined by interagent distances according to a predefined
communication graph, for example, in Ramazani et al. [4].
The DFC allows a more decentralized and scalable setup
than position based control strategies because the control

laws can be implemented using local sensors on the agents.
Representative works are of Dimarogonas and Johansson [5]
for the case of undirected communication graphs or Oh and
Ahn [6] that used an Euclidean distancematrix.TheDFC has
been addressed for the case of single or double integrators,
separately in Zavlanos et al. [7] and leader-follower schemes
in Anderson et al. [8]. Control of formations specified
only by interagent angles has been studied by Basiri et al.
[9]. Formation and communication changes have also been
studied to find suitable control laws that maintain rigidity in
Zelazo et al. [10]. Experimental work is found in Fidan et al.
[11] using local video cameras and Antonelli et al. [12] with
laser range finder devices.Our previous contributions inDFC
are in Lopez-Gonzalez et al. [13] for a distance-orientation
scheme, Ferreira-Vazquez et al. [14] adding desired internal
angles in the formation pattern to compensate for the flip
ambiguity problem, and Ferreira-Vazquez et al. [15] using
planar as well as volume constraints for DFC in 3D. A recent
paper by Anderson et al. [16] makes a detailed convergence
analysis of DFC with signed area constraints using standard
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potential functions. However, their results are restricted to
formations of three and four agents without any collision
avoidance techniques.

In some applications, the agents must follow a prescribed
trajectorymaintaining theDFC simultaneously.This problem
is known as formation tracking or marching control. The
models for the agents depending on the approximation used,
kinematic or dynamical, could be of first or second order
which involves different physical robots with an appropriate
linearization. Therefore, the combination of these simplified
models is the reason to consider this setup as a heteroge-
neous multiagent system (e.g., Zheng et al. [17], Hernandez-
Martinez et al. [18]).

For first-order agents, the leader-follower schemes add
the reference velocity for the leader, whereas the follower
agents estimate this velocity using an adaptive method in
Kang et al. [19]. In Rozenheck et al. [20], a subset of leader
agents follows the marching path and the followers combine
a proportional-integral control with the standard gradient
method. The velocity and position of a target are commu-
nicated to the leader agent in Cai and De Queiroz [21]. The
orientation of the formations and the enclosing and tracking
of a moving target is studied in Garcia De Marina et al. [22]
cancelling the phenomena of distance mismatches due to the
local measurement of distance. Alternative works are of Xiao
et al. [23] for a leader-follower distance maintenance and
obstacle avoidance for unicycle-type agents using nonlinear
model predictive control with neurodynamic optimization.

For the case of double integratormodels, in Dimarogonas
and Johansson [24] formation tracking is achieved trans-
mitting a common velocity. The case of unmanned aerial
vehicles (UAVs) is studied in Zhang et al. [25], where a
linearized elastic distance vector adapts to the changes of the
follower velocities. A set of underwater mobile agents in a
vertical plane formation is studied in Do [26], where an opti-
mal assignment algorithm selects the appropriated reference
trajectories to the agents. Switched routines of tracking and
encircling of a moving target in a V-shape DFC are addressed
in Dang and Horn [27] using attractive or repulsive and
rotational force fields.

The analysis of a combined set of first-second-order
agents becomes a useful result in the sense that heterogeneous
agents can be formed within the same setup. Our previous
work in Hernandez-Martinez et al. [18] studies the DFC
for terrestrial (first-order) and aerial (second-order) agents.
Also, the potential of collaborative work of aerial and ground
agents is shown in Harik et al. [28], where an aerial agent
provides way points to the ground agents to carry objects
in unsafe industrial areas using a predictive vision to keep a
distance and bearing to the leader.

This paper extends our previous work in Hernandez-
Martinez et al. [18], focusing on static DFC, for the case of
formation tracking of heterogeneous agents communicated
by an arbitrary undirected graph.Themain contributions and
originality of this work are given by the next points:

(i) The approach applies to a combined set of first- and
second-order agents, where a second-order leader is

chosen to follow a desired marching path whilst all
the agents maintain a DFC.

(ii) Two control laws are designed using Lyapunov tech-
niques. The first strategy depends on distance and
orientation measurements only applied to rigid undi-
rected formation topologies of distance. Convergence
to the formation setup is shown for an arbitrary
number of agents.

(iii) In order to avoid symmetric solutions, a second
strategy is designed to add desired area constraints
related to the standard triple product of a subset of
robots. It defines a new area based or planar topology
based on triplets of robots separately of the previous
distance formation topology. The combination of
distance and area restrictions helps to avoid undesired
final patterns of the agents and the convergence to the
desired formation eliminating some distance links.

(iv) Both approaches are based on a general class of
artificial potential functionswith attractive and repul-
sive behavior designed to ensure convergence and
collision avoidance.The performance of the strategies
is shown by numerical simulations.

The paper is organized in the following sections. Section 2
presents the problem definition for the mixed group of
agents and the distance-based formation topology. Section 3
addresses the first strategy of DFC. The definition of the
planar topology related to the area constraints is given in
Section 4 and the addition of this planar topology to the
previous DFC is studied in Section 5, completed with the
analysis of the appendix section. Numerical simulations
for both strategies are shown in Section 6. Finally, some
conclusion remarks are given in Section 7.

2. Problem Definition

Let 𝑁 = {𝑅1, . . . , 𝑅𝑛} be the set of mobile agents with
positions in the plane 𝜉 = {𝜉1, . . . , 𝜉𝑛}. Consider the first 𝑛1
agents as single-integrators and the rest as double integrators;
that is,

̇𝜉𝑖 = 𝑢𝑖, 𝑖 = 1, . . . , 𝑛1, (1)

̇𝜉𝑖 = 𝑝𝑖, 𝑝̇𝑖 = 𝑢𝑖, 𝑖 = (𝑛1 + 1) , . . . , 𝑛, (2)

where 𝑢𝑖 ∈ R2 is the input vector of the agent 𝑅𝑖, and 𝑝𝑖
is the velocity of the second-order agents. As shown below,
the single and double integrators are related to kinematic
or dynamic posture models of mobile agents, respectively.
This allows a feasible combination of distinct modeling
complexities into the same motion coordination scheme.
Consider the last agent 𝑅𝑛 to be the leader agent.

Assume that each agent 𝑅𝑖 is communicated to 𝑔𝑖 agents
that belong to its adjacent subset 𝑁𝑖 ⊂ 𝑁 (note that𝑔𝑖 = card(𝑁𝑖)). Thus, the possible interagent communication
defines a distance-based formation graph (DFG) given by

𝐺 = {𝑄, 𝐸,𝐷} , (3)
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Figure 1: Relative distance and orientation among a pair of agents.

where 𝑄 = 𝑁 is the set of vertices related to the agents; 𝐸 ={(𝑗, 𝑖) ∈ 𝑄 × 𝑄} is the set of edges that represent the possible
interagent communications; therefore (𝑗, 𝑖) ∈ 𝐸 if 𝑗 ∈ 𝑁𝑖.
The set 𝐷 = {𝑑𝑗𝑖}, ∀(𝑗, 𝑖) ∈ 𝐸, contains the desired distances
between 𝑅𝑖 and 𝑅𝑗; that is, ‖𝜉𝑖 − 𝜉𝑗‖ = 𝑑𝑖𝑗 ∈ R, ∀𝑖 ̸= 𝑗, 𝑗 ∈ 𝑁𝑖
within a desired formation pattern [13].

A well-defined DFG must be connected, that is, there
are no isolated nodes (𝑁𝑖 ̸= ⌀), and rigid, where at least2𝑛 − 3 communication edges are defined for the 𝑛 agents.
It is assumed that 𝑑𝑖𝑗 = 𝑑𝑗𝑖 for all (𝑗, 𝑖) ∈ 𝐸. This paper
addresses the case of undirected graphs, that is, bidirectional
communication between agents, where if 𝑅𝑗 ∈ 𝑁𝑖, then 𝑅𝑖 ∈𝑁𝑗, for all 𝑖 ̸= 𝑗.

On the other hand, define the distance between 𝑅𝑖 and𝑅𝑗 as 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = ‖r𝑖𝑗‖ = ‖𝜉𝑗 − 𝜉𝑖‖ and 𝜃𝑖𝑗 as the angle of
r𝑖𝑗 with respect to a reference axis (e.g., the magnetic pole of
the Earth), as shown in Figure 1. It is assumed that the
values of distance and orientation can be measured by the
combination of local sensors as laser range finders or lidar
and magnetometers.

Problem Statement 1.The control objective is to design control
laws 𝑢𝑖, 𝑖 = 1, . . . , 𝑛 that satisfy simultaneously

(i) lim𝑡→∞𝑟𝑖𝑗 − 𝑑𝑖𝑗 = 0, ∀𝑗 ∈ 𝑁𝑖, that is, convergence of
the formation errors,

(ii) lim𝑡→∞𝜉𝑛 − 𝑚(𝑡) = 0; that is, the leader agent
converges to a desired reference trajectory𝑚(𝑡).

3. Distance-Based Control Strategy

Let 𝜑𝑖𝑗 = 𝜑𝑗𝑖 = 𝑟𝑖𝑗 −𝑑𝑖𝑗 be the distance error between any pair
of agents 𝑅𝑖 and 𝑅𝑗.
Definition 1 (see Lopez-Gonzalez et al. [13]). Define an
Attractive-Repulsive Distance-based Potential Function
(ARD-PF) 𝑉𝑖𝑗 : R → R for 𝑅𝑖 and 𝑅𝑗 as a function satisfying
the following conditions:

(a) 𝑉𝑖𝑗 is a smooth function of 𝜑𝑖𝑗.
(b) 𝑉𝑖𝑗 > 0 and 𝑉𝑖𝑗 = 0 only if 𝜑𝑖𝑗 = 0.
(c) 𝑉𝑖𝑗 →∞ when 𝑟𝑖𝑗 = 𝜑𝑖𝑗 + 𝑑𝑖𝑗 → 0.
(d) 𝜕𝑉𝑖𝑗/𝜕𝜑𝑖𝑗 = 𝜑𝑖𝑗Γ𝑖𝑗 with Γ𝑖𝑗 a smooth function of 𝜑𝑖𝑗.

For example, in the simulation example and experimental
work below, we consider the ARD-PF given in Hernandez-
Martinez et al. [18]:

𝑉𝑖𝑗 = (𝑟𝑖𝑗 − 𝑑𝑖𝑗)
2

𝑟𝑖𝑗 = 𝜑2𝑖𝑗𝜑𝑖𝑗 + 𝑑𝑖𝑗 ,
with Γ𝑖𝑗 = 𝜑𝑖𝑗 + 2𝑑𝑖𝑗(𝜑𝑖𝑗 + 𝑑𝑖𝑗)2 .

(4)

The time derivative of 𝑉𝑖𝑗 can be expressed as

𝑉̇𝑖𝑗 = [𝜕𝑉𝑖𝑗𝜕𝜑𝑖𝑗 ][
𝜕𝜑𝑖𝑗𝜕𝑟𝑖𝑗 ] ̇𝑟𝑖𝑗 = 𝜑𝑖𝑗Γ𝑖𝑗 ̇𝑟𝑖𝑗. (5)

Note that the time derivative of 𝑟𝑖𝑗 can be written as

̇𝑟𝑖𝑗 = 𝑟−1𝑖𝑗 (𝜉𝑗 − 𝜉𝑖)⊤ ( ̇𝜉𝑗 − ̇𝜉𝑖) . (6)

From Figure 1 it is clear that [𝜉𝑗 − 𝜉𝑖]⊤ = 𝑟𝑖𝑗[cos 𝜃𝑖𝑗, sin 𝜃𝑖𝑗]
(polar coordinates), and (6) can be reduced to

̇𝑟𝑖𝑗 = [cos 𝜃𝑖𝑗, sin 𝜃𝑖𝑗] ( ̇𝜉𝑗 − ̇𝜉𝑖) . (7)

Substituting (7) in (5), then

𝑉̇𝑖𝑗 = 𝜑𝑖𝑗Ω𝑖𝑗 ( ̇𝜉𝑗 − ̇𝜉𝑖) , Ω𝑖𝑗 ≡ Γ𝑖𝑗 [cos 𝜃𝑖𝑗, sin 𝜃𝑖𝑗] . (8)

Note also from Figure 1 that Ω𝑖𝑗 = −Ω𝑗𝑖. Since 𝜃𝑗𝑖 = 𝜋 + 𝜃𝑖𝑗,
then cos 𝜃𝑖𝑗 = − cos 𝜃𝑗𝑖 and sin 𝜃𝑖𝑗 = − sin 𝜃𝑗𝑖. This property is
useful in the following result.

Theorem 2. Consider the group of agents given by (1)-(2)
communicated by awell-definedDFG given in (3) and a specific
ARD-PF. Define the control law as

𝑢𝑖 = 𝜌𝑝Ω⊤𝑖 𝜑𝑖 + 𝑚̇, 𝑖 = 1, . . . , 𝑛1, (9)

𝑢𝑖 = Ω⊤𝑖 𝜑𝑖 − 𝜌𝑑 (𝑝𝑖 − 𝑚̇) + 𝑚̈,
𝑖 = (𝑛1 + 1) , . . . , 𝑛 − 1, (10)

𝑢𝑛 = Ω⊤𝑛 𝜑𝑛 − 𝜌𝑚 (𝜉𝑛 − 𝑚) − 𝜌𝑑 (𝑝𝑛 − 𝑚̇) + 𝑚̈, (11)

where 𝜌𝑝, 𝜌𝑚, 𝜌𝑑 ∈ R with 𝜌𝑝, 𝜌𝑚, 𝜌𝑑 > 0 are constant gains,
and

Ω𝑖 = [[[[
[

Ω𝑖1...
Ω𝑖𝑛
]]]]
]
∈ R𝑛×2,

𝜑𝑖 = [[[[
[

𝑎𝑖1𝜑𝑖1...
𝑎𝑖𝑛𝜑𝑖𝑛

]]]]
]
∈ R𝑛,

(12)

where 𝑎𝑖𝑗 = 1 if (𝑗, 𝑖) ∈ 𝐸 and 𝑎𝑖𝑗 = 0 otherwise, and 𝑝𝑖 is
defined in (2). Note that the addition of 𝑎𝑖𝑗 eliminates the
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components of the distance errors between agents that do not
have communication in the DFG. In the assumption that the
agents are not collinear and do not collide at 𝑡 = 0 and
formation graph is infinitesimally rigid, the closed-loop system
given by (1), (2), and (9)–(11) will converge locally to the desired
formation; that is, lim𝑡→∞𝜑𝑖𝑗 = 0, ∀𝑗 ∈ 𝑁𝑖 avoiding interagent
collisions; that is, 𝑟𝑖𝑗 > 0, ∀𝑖 ̸= 𝑗, ∀𝑡 > 0, and the leader agent
converges to𝑚(𝑡).
Remark 3. The control law (11) implies that 𝑅𝑛 is the only
agent with complete information about the reference trajec-
tory. The rest of the agents need the first or second time
derivative of 𝑚(𝑡) which are assumed to be communicated
between agents. In order to design a completely decentralized
control strategy, 𝑚̇(𝑡) can be obtained by observers or other
similar approaches, for example, in Hernandez-Martinez et
al. [29], Ren and Sorensen [30], andHaghighi andCheah [31].
Note that the rest of the terms of the control law are defined
to be dependent on the distance and orientation data.

Proof. Consider the Lyapunov candidate function

𝑉 = 12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑉𝑖𝑗 + 12
𝑛∑
𝑖=𝑛1+1

󵄩󵄩󵄩󵄩𝑝𝑖 − 𝑚̇󵄩󵄩󵄩󵄩2 + 𝜌𝑚2 󵄩󵄩󵄩󵄩𝜉𝑛 − 𝑚󵄩󵄩󵄩󵄩2 , (13)

where𝑉𝑖𝑗 is a positive definite ARD-PF. Note that 𝑉 is always
positive and vanishes for the desired formation tracking, that
is, only when 𝜑𝑖𝑗 = 0, ∀𝑗 ∈ 𝑁𝑖, 𝑝𝑖 = 𝑚̇, 𝑖 = (𝑛1 + 1), . . . , 𝑛,
and 𝜉𝑛 = 𝑚. The time derivative of 𝑉, substituting (1) and (2)
is given by

𝑉̇ = 12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑉̇𝑖𝑗 + 𝑛∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ (𝑢𝑖 − 𝑚̈)
+ 𝜌𝑚 (𝜉𝑛 − 𝑚)⊤ (𝑝𝑛 − 𝑚̇) .

(14)

Substituting (8) in the first term of (14), it becomes

12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑉̇𝑖𝑗
= 12 (

𝑛∑
𝑖=1

𝑛∑
𝑗=1

[𝜑𝑖𝑗Ω𝑖𝑗 ̇𝜉𝑗] − 𝑛∑
𝑖=1

𝑛∑
𝑗=1

[𝜑𝑖𝑗Ω𝑖𝑗 ̇𝜉𝑖]) .
(15)

Because the DFG is undirected, 𝜑𝑖𝑗 = 𝜑𝑗𝑖 and Ω𝑖𝑗 = −Ω𝑗𝑖, the
previous equation can be reduced to

12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑉̇𝑖𝑗
= 12 (

𝑛∑
𝑖=1

𝑛∑
𝑗=1

[𝜑𝑖𝑗Ω𝑖𝑗 ̇𝜉𝑗] + 𝑛∑
𝑗=1

𝑛∑
𝑖=1

[𝜑𝑗𝑖Ω𝑗𝑖 ̇𝜉𝑖])

= 12 (2
𝑛∑
𝑖=1

𝑛∑
𝑗=1

[𝜑𝑖𝑗Ω𝑖𝑗 ̇𝜉𝑗]) = 𝑛∑
𝑗=1

[ 𝑛∑
𝑖=1

(𝜑𝑗𝑖Ω𝑖𝑗) ̇𝜉𝑗]

= − 𝑛∑
𝑗=1

[ 𝑛∑
𝑖=1

(𝜑𝑗𝑖Ω𝑗𝑖) ̇𝜉𝑗] = − 𝑛∑
𝑗=1

[𝜑⊤𝑗 Ω𝑗 ̇𝜉𝑗] .

(16)

Therefore, substituting (16) in (14), but changing the subscript𝑗 by 𝑖, the time derivative of 𝑉 can be reduced to

𝑉̇ = − 𝑛∑
𝑖=1

[𝜑⊤𝑖 Ω𝑖 ̇𝜉𝑖] + 𝑛∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ (𝑢𝑖 − 𝑚̈)
+ 𝜌𝑚 (𝜉𝑛 − 𝑚)⊤ (𝑝𝑛 − 𝑚̇) .

(17)

The summation in the first term of (17) can be divided
according to the order of agents given in (1) and (2). Thus,

𝑉̇ = − 𝑛1∑
𝑖=1

[𝜑⊤𝑖 Ω𝑖𝑢𝑖] − 𝑛∑
𝑖=𝑛1+1

[𝜑⊤𝑖 Ω𝑖𝑝𝑖]
+ 𝑛∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ (𝑢𝑖 − 𝑚̈)
+ 𝜌𝑚 (𝜉𝑛 − 𝑚)⊤ (𝑝𝑛 − 𝑚̇) .

(18)

The control laws (9)–(11) can be replaced in (18), obtaining

𝑉̇ = − 𝑛1∑
𝑖=1

[𝜑⊤𝑖 Ω𝑖 (𝜌𝑝Ω⊤𝑖 𝜑𝑖 + 𝑚̇)] − 𝑛∑
𝑖=𝑛1+1

[𝜑⊤𝑖 Ω𝑖𝑝𝑖]

+ 𝑛−1∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ ([Ω⊤𝑖 𝜑𝑖 − 𝜌𝑑 (𝑝𝑖 − 𝑚̇) + 𝑚̈] − 𝑚̈)
+ (𝑝𝑛 − 𝑚̇)⊤
⋅ ([Ω⊤𝑛 𝜑𝑛 − 𝜌𝑚 (𝜉𝑛 − 𝑚) − 𝜌𝑑 (𝑝𝑛 − 𝑚̇) + 𝑚̈] − 𝑚̈)
+ 𝜌𝑚 (𝜉𝑛 − 𝑚)⊤ (𝑝𝑛 − 𝑚̇) .

(19)

Note that some terms are mutually cancelled. Therefore, it
reduces to

𝑉̇ = −𝜌𝑝 𝑛1∑
𝑖=1

[(𝜑⊤𝑖 Ω𝑖) (Ω⊤𝑖 𝜑𝑖)] − 𝑛1∑
𝑖=1

[(𝜑⊤𝑖 Ω𝑖) 𝑚̇]
− 𝑛∑
𝑖=𝑛1+1

[𝜑⊤𝑖 Ω𝑖𝑝𝑖]
+ 𝑛∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ (Ω⊤𝑖 𝜑𝑖 − 𝜌𝑑 (𝑝𝑖 − 𝑚̇)) .
(20)

Grouping some terms in the previous equation, it becomes

𝑉̇ = −𝜌𝑝 𝑛1∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩Ω⊤𝑖 𝜑𝑖󵄩󵄩󵄩󵄩󵄩2 − 𝜌𝑑
𝑛∑
𝑖=𝑛1+1

󵄩󵄩󵄩󵄩𝑝𝑖 − 𝑚̇󵄩󵄩󵄩󵄩2

− 𝑛1∑
𝑖=1

[𝜑⊤𝑖 Ω𝑖𝑚̇] − 𝑛∑
𝑖=𝑛1+1

[𝑚̇⊤Ω⊤𝑖 𝜑𝑖]
− 𝑛∑
𝑖=𝑛1+1

[𝜑⊤𝑖 Ω𝑖𝑝𝑖] + 𝑛∑
𝑖=𝑛1+1

[𝑝⊤𝑖 Ω⊤𝑖 𝜑𝑖] .
(21)
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Note that (𝑚̇⊤Ω⊤𝑖 𝜑𝑖) = (𝜑⊤𝑖 Ω𝑖𝑚̇)⊤ produces the same real
value, similarly to the case of (𝑝⊤𝑖 Ω⊤𝑖 𝜑𝑖) = (𝜑⊤𝑖 Ω𝑖𝑝𝑖)⊤. Then
the last two summations of (21) are cancelled and

𝑉̇ = −𝜌𝑝 𝑛1∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩Ω⊤𝑖 𝜑𝑖󵄩󵄩󵄩󵄩󵄩2 − 𝜌𝑑
𝑛∑
𝑖=𝑛1+1

󵄩󵄩󵄩󵄩𝑝𝑖 − 𝑚̇󵄩󵄩󵄩󵄩2

− 𝑛∑
𝑖=1

[𝜑⊤𝑖 Ω𝑖] 𝑚̇.
(22)

Observe that the last term ∑𝑛𝑖=1[𝜑⊤𝑖 Ω𝑖]𝑚̇ vanishes since for
each column 𝑗 of the matrixΩ𝑖 it is possible to write

𝑛∑
𝑖=1

𝜑⊤𝑖 Ω𝑖,𝑗 = Tr (Φ⊤Ω) (23)

with Φ = [𝜑1, . . . , 𝜑𝑛] and Ω = [Ω1,𝑗, . . . , Ω𝑛,𝑗]. Observing
that Φ = Φ⊤ and Ω = −Ω⊤ and using the properties of the
trace operator implied that

Tr (Φ⊤Ω) = Tr (Ω⊤Φ) = Tr (−ΩΦ⊤) = −Tr (Φ⊤Ω)
= 0. (24)

Finally,

𝑉̇ = −𝜌𝑝 𝑛1∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩Ω⊤𝑖 𝜑𝑖󵄩󵄩󵄩󵄩󵄩2 − 𝜌𝑑
𝑛∑
𝑖=𝑛1+1

󵄩󵄩󵄩󵄩𝑝𝑖 − 𝑚̇󵄩󵄩󵄩󵄩2 . (25)

Note that 𝑉̇ is negative semidefinite. Using LaSalle’s Invari-
anceTheorem the systemwill converge to the largest invariant
verifyingΩ⊤𝑖 𝜑𝑖 = 0, 𝑖 = 1, . . . , 𝑛1 (first-order agents) and 𝑝𝑖 =𝑚̇, 𝑖 = (𝑛1 + 1), . . . , 𝑛 (second-order agents), simultaneously.
Substituting these conditions in closed-loop system (1), (2),
and (9)–(11), then

̇𝜉𝑖 = 𝑚̇, 𝑖 = 1, . . . , 𝑛1, (26)

̈𝜉𝑖 = Ω⊤𝑖 𝜑𝑖 + 𝑚̈, 𝑖 = (𝑛1 + 1) , . . . , 𝑛 − 1, (27)

̈𝜉𝑛 = Ω⊤𝑛 𝜑𝑛 − 𝜌𝑚 (𝜉𝑛 − 𝑚) + 𝑚̈. (28)

Note that the velocity of the first-order agents also converges
to 𝑚̇. Therefore all the agents converge to the same velocity.
On the other hand, since 𝑝𝑖 = 𝑚̇, 𝑖 = (𝑛1 + 1), . . . , 𝑛, then𝑝̇𝑖 = ̈𝜉𝑖 = 𝑚̈, 𝑖 = (𝑛1 + 1), . . . , 𝑛. Then, (27) and (28) satisfy

0 = Ω⊤𝑖 𝜑𝑖, 𝑖 = (𝑛1 + 1) , . . . , 𝑛 − 1,
0 = Ω⊤𝑛 𝜑𝑛 − 𝜌𝑚 (𝜉𝑛 − 𝑚) . (29)

Consequently, by using the fact that ∑𝑖Ω⊤𝑖 𝜑𝑖 = 0 the
multiagent system will converge to

0 = Ω⊤𝑖 𝜑𝑖, 𝑖 = 1, . . . , 𝑛, (30)

0 = 𝑝𝑖 − 𝑚̇, (31)

0 = 𝜉𝑛 − 𝑚. (32)
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Figure 2: Configuration of 3 agents showing distance 𝑟𝑗𝑘 between
the relative position vectors, orientation angle 𝜃𝑖𝑗, and the shaded
oriented area 𝛼𝑖𝑗𝑘.

Stacking all nonzero elements of 𝜑𝑖, ∀𝑖, without repeating the
symmetric elements, (30) can be rewritten as

0 = Γ𝑅⊤𝜑,
Γ = diag [. . . , 𝑟−1𝑖𝑗 Γ𝑖𝑗, . . .] ⊗ [1, 1]⊤ , 𝜑 = [. . . , 𝜑𝑖𝑗, . . .]⊤ (33)

with ⊗ the Kronecker product and 𝑅 being the rigidity
matrix of formation graph (3), Trinh et al. [32]. By the
rigidity assumption, the rank of 𝑅 is 2𝑛 − 3 and using also
the properties of the ARD-PF, this implies the solution to
(33) requires 𝜑𝑖𝑗 = 0 implying the convergence in distance
between agents. Coupled with the convergence of the veloci-
ties and the leader agent’s tracking system, it is concluded that
the agents converge to the desired formation tracking.

Remark 4. It should be noted that the convergence result is
local since there may still exists undesired equilibrium satis-
fying Ω⊤𝑖 𝜑𝑖 = 0, 𝑖 = 1, . . . , 𝑛1, with 𝜑𝑖 ̸= 0. This situation may
occur when some agents are collinear, decreasing the rank
of the rigidity matrix 𝑅. A detailed analysis of the equilibria
points for these systems is quite complex, exceeds the scope
of the present paper, and will be studied in future works.

Remark 5. Finally, the Lyapunov function tends to infinity
when any 𝑟𝑖𝑗 → 0. Because the agents do not collide at 𝑡 = 0
by the initial assumption and 𝑉̇ ≤ 0, it is clear that the
communicated agents can be near to each other but 𝑟𝑖𝑗 ∀𝑖, 𝑗 ∈𝑁will never be equal to zero, and therefore the agents do not
collide. Adding a repulsive functionwith similar properties to
an ARD-PF may extend the collision avoidance to all agents.

4. Planar Topology

It is also possible to define a planar topology for a formation.
For any 3-tuple (𝑖, 𝑗, 𝑘) the oriented planar area defined by
agents 𝑅𝑖, 𝑅𝑗, and 𝑅𝑘 can be expressed by

𝛼𝑖𝑗𝑘 = 12k⊤ (r𝑖𝑗 × r𝑖𝑘) , (34)

where k = [0, 0, 1]⊤ is the unitary vector orthogonal to
the planar work space, as shown in Figure 2. This planar
information provides relative angular information between
agents in any given configuration. Let 𝐿2 be the number of
planar 3-tuples specified for a desired configuration. Let𝑀2
be the set of all 3-tuples (𝑖𝑠, 𝑗𝑠, 𝑘𝑠), 𝑠 = 1, . . . , 𝐿2, for which
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planar communication is established and the set of desired
area values 𝛼⋆ = {𝛼⋆𝑖𝑠𝑗𝑠𝑘𝑠} is defined. It is assumed that the
planar communication is undirected; that is, (𝑖, 𝑗, 𝑘) ∈ 𝑀2 ⇒(𝑗, 𝑘, 𝑖) ∈ 𝑀2 and (𝑖, 𝑘, 𝑗) ∈ 𝑀2. Besides, 𝛼⋆𝑖𝑗𝑘 = 𝛼⋆𝑗𝑘𝑖 =−𝛼⋆𝑖𝑘𝑗, ∀𝑖, 𝑗, 𝑘. The planar topology is then defined as

𝐺2 = {𝑄,𝑀2, 𝛼⋆} . (35)

Additionally, let 𝑏𝑖𝑗𝑘 be defined such as 𝑏𝑖𝑗𝑘 = 1 if (𝑖, 𝑗, 𝑘) ∈ 𝑀2
and 0 otherwise. Observe that for a rigid graph the agent
configurations verifying the distance constraints are invariant
to group translations and rotations. Besides, there may also
be other configurations of agents that verify the distance
constraints but are symmetric to each other and will have
different area values for some 3-tuples. Therefore, the planar
topology may help to specify the desired formation better.

Observe also that

𝛼𝑖𝑗𝑘 = 12r⊤𝑖𝑗𝐻r𝑖𝑘, 𝐻 = [
0 1
−1 0] (36)

which will be useful in the proofs.

ProblemStatement 2.The control objective is to design control
laws 𝑢𝑖, 𝑖 = 1, . . . , 𝑛, that satisfy simultaneously

(i) lim𝑡→∞𝑟𝑖𝑗 − 𝑑𝑖𝑗 = 0, ∀𝑗 ∈ 𝑁𝑖, that is, convergence of
the formation errors,

(ii) lim𝑡→∞𝛼𝑖𝑗𝑘 − 𝛼⋆𝑖𝑗𝑘 = 0, ∀(𝑖, 𝑗, 𝑘) ∈ 𝑀2, that is,
convergence of the specified areas,

(iii) lim𝑡→∞𝜉𝑛 − 𝑚(𝑡) = 0; that is, the leader agent
converges to a desired reference trajectory𝑚(𝑡).

5. Distance and Area Based Control

Theorem 6. Consider the group of agents given by (1)-(2)
communicated by a well-defined DFG given in (3) and planar
topology (35). Define the control law as

𝑢𝑖 = 𝜌𝑝Ω⊤𝑖 𝜑𝑖 + 𝜌𝑎𝐹𝑖 + 𝑚̇, 𝑖 = 1, . . . , 𝑛1, (37)

𝑢𝑖 = Ω⊤𝑖 𝜑𝑖 + 𝜌𝑏𝐹𝑖 − 𝜌𝑑 (𝑝𝑖 − 𝑚̇) + 𝑚̈,
𝑖 = (𝑛1 + 1) , . . . , 𝑛 − 1, (38)

𝑢𝑛 = Ω⊤𝑛 𝜑𝑛 + 𝜌𝑏𝐹𝑛 − 𝜌𝑚 (𝜉𝑛 − 𝑚) − 𝜌𝑑 (𝑝𝑛 − 𝑚̇) + 𝑚̈, (39)

where 𝜌𝑎, 𝜌𝑏, 𝜌𝑝, 𝜌𝑚, 𝜌𝑑 are positive real constant gains, Ω𝑖 and𝜑𝑖 are defined in (12), and

𝐹𝑖 = ∑
𝑗,𝑘

𝑏𝑖𝑗𝑘𝑒𝑖𝑗𝑘𝐻r𝑗𝑘, 𝑒𝑖𝑗𝑘 = 𝛼⋆𝑖𝑗𝑘 − 𝛼𝑖𝑗𝑘. (40)

Suppose that (a) the agents are not collinear and do not collide
at 𝑡 = 0 and (b) the equilibria occur only when 𝜑𝑖𝑗 = 0,∀𝑖, 𝑗 = 1, . . . , 𝑛. Then, in the closed-loop system (1), (2), and
(37)–(39) the agents converge locally to the desired formation;
that is, lim𝑡→∞𝜑𝑖𝑗 = 0, ∀𝑗 ∈ 𝑁𝑖, avoiding interagent collisions;
that is, 𝑟𝑖𝑗 > 0, ∀𝑖 ̸= 𝑗, ∀𝑡 > 0, and the leader agent converges
to𝑚(𝑡).

Remark 7. The control law (39) implies that 𝑅𝑛 is the only
agent with complete information about the reference trajec-
tory. The rest of the agents need the first or second time
derivative of 𝑚(𝑡) which are assumed to be communicated
or estimated between agents as discussed in Remark 3. Note
that the rest of the terms of the control law are defined to be
dependent on the relative distance, orientation, and area data.

Proof. Consider the Lyapunov candidate function

𝑉 = 12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑉𝑖𝑗 + 12𝜆 ∑
(𝑖,𝑗,𝑘)∈𝑀2

𝑒2𝑖𝑗𝑘 + 12
𝑛∑
𝑖=𝑛1+1

󵄩󵄩󵄩󵄩𝑝𝑖 − 𝑚̇󵄩󵄩󵄩󵄩2

+ 𝜌𝑚2 󵄩󵄩󵄩󵄩𝜉𝑛 − 𝑚󵄩󵄩󵄩󵄩2 ,
(41)

where 𝑉𝑖𝑗 is a positive definite ARD-PF given by Definition 1
and 𝑒𝑖𝑗𝑘 as in (40). Note that𝑉 is always positive and vanishes
for the desired formation tracking. The time derivative of 𝑉,
substituting (1) and (2), is given by

𝑉̇ = 12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑉̇𝑖𝑗 + 𝜆 ∑
(𝑖,𝑗,𝑘)∈𝑀2

𝑒𝑖𝑗𝑘 ̇𝑒𝑖𝑗𝑘
+ 𝑛∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ (𝑢𝑖 − 𝑚̈)
+ 𝜌𝑚 (𝜉𝑛 − 𝑚)⊤ (𝑝𝑛 − 𝑚̇) .

(42)

Using a similar derivation as inTheorem 2, (42) is reduced to

𝑉̇ = − 𝑛∑
𝑖=1

[𝜑⊤𝑖 Ω𝑖 ̇𝜉𝑖] + 𝜆 ∑
(𝑖,𝑗,𝑘)∈𝑀2

𝑒𝑖𝑗𝑘 ̇𝑒𝑖𝑗𝑘
+ 𝑛∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ (𝑢𝑖 − 𝑚̈)
+ 𝜌𝑚 (𝜉𝑛 − 𝑚)⊤ (𝑝𝑛 − 𝑚̇) .

(43)

Using the matrix expression for 𝛼𝑖𝑗𝑘 given by (36) the second
term on the left hand side can be written as

∑
(𝑖,𝑗,𝑘)∈𝑀2

𝑒𝑖𝑗𝑘 ̇𝑒𝑖𝑗𝑘 = ∑
(𝑖,𝑗,𝑘)∈𝑀2

𝑒𝑖𝑗𝑘 ( ̇r⊤𝑖𝑗𝐻r𝑖𝑘 + r⊤𝑖𝑗𝐻 ̇r𝑖𝑘)
= ∑
𝑖,𝑗,𝑘

𝑏𝑖𝑗𝑘𝑒𝑖𝑗𝑘 (r⊤𝑖𝑘𝐻⊤ (𝑝𝑗 − 𝑝𝑖) + r⊤𝑖𝑗𝐻(𝑝𝑘 − 𝑝𝑖)) . (44)

Since𝐻 = −𝐻⊤ and using the undirected assumption for the
topology, the equation above simplifies to

∑
(𝑖,𝑗,𝑘)∈𝑀2

𝑒𝑖𝑗𝑘 ̇𝑒𝑖𝑗𝑘
= ∑
𝑖,𝑗,𝑘

𝑏𝑖𝑗𝑘𝑒𝑖𝑗𝑘 (r⊤𝑖𝑘𝐻⊤𝑝𝑗 + r⊤𝑖𝑗𝐻𝑝𝑘 + r⊤𝑗𝑘𝐻𝑝𝑖)
= 3∑
𝑖,𝑗,𝑘

𝑏𝑖𝑗𝑘𝑒𝑖𝑗𝑘r⊤𝑗𝑘𝐻𝑝𝑖 = −3∑
𝑖

𝐹⊤𝑖 𝑝𝑖.
(45)
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Substituting (45) into (43) and dividing the first term accord-
ing to the order of agents given in (1) and (2), thus,

𝑉̇ = − 𝑛1∑
𝑖=1

[𝜑⊤𝑖 Ω𝑖𝑢𝑖] − 3𝜆 𝑛1∑
𝑖=1

𝐹⊤𝑖 𝑢𝑖 − 3𝜆 𝑛∑
𝑖=𝑛1+1

𝐹⊤𝑖 𝑝𝑖
− 𝑛∑
𝑖=𝑛1+1

[𝜑⊤𝑖 Ω𝑖𝑝𝑖] + 𝑛∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ (𝑢𝑖 − 𝑚̈)
+ 𝜌𝑚 (𝜉𝑛 − 𝑚)⊤ (𝑝𝑛 − 𝑚̇) .

(46)

The control laws (37)–(39) can be replaced in (46), obtaining

𝑉̇ = − 𝑛1∑
𝑖=1

(𝜑⊤𝑖 Ω𝑖 + 3𝜆𝐹⊤𝑖 ) (𝜌𝑝Ω⊤𝑖 𝜑𝑖 + 𝜌𝑎𝐹𝑖 + 𝑚̇)
− 𝑛∑
𝑖=𝑛1+1

[(𝜑⊤𝑖 Ω𝑖 + 3𝜆𝐹𝑖) 𝑝𝑖]

+ 𝑛−1∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ (Ω⊤𝑖 𝜑𝑖 + 𝜌𝑏𝐹𝑖 − 𝜌𝑑 (𝑝𝑖 − 𝑚̇))
+ (𝑝𝑛 − 𝑚̇)⊤ (Ω⊤𝑛 𝜑𝑛 + 𝜌𝑏𝐹𝑛 − 𝜌𝑑 (𝑝𝑛 − 𝑚̇)) .

(47)

Defining 𝜌𝑎 = 3𝜆𝜌𝑝 the derivative (47) becomes

𝑉̇ = −𝜌𝑝 𝑛1∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨Ω⊤𝑖 𝜑𝑖 + 3𝜆𝐹𝑖󵄨󵄨󵄨󵄨󵄨2 −
𝑛1∑
𝑖=1

(𝜑⊤𝑖 Ω𝑖 + 3𝜆𝐹⊤𝑖 ) 𝑚̇
− 𝑛∑
𝑖=𝑛1+1

(𝜑⊤𝑖 Ω𝑖 + 3𝜆𝐹𝑖) 𝑝𝑖 − 𝜌𝑑 𝑛∑
𝑖=𝑛1+1

󵄨󵄨󵄨󵄨𝑝𝑖 − 𝑚̇󵄨󵄨󵄨󵄨2

+ 𝑛∑
𝑖=𝑛1+1

(𝑝𝑖 − 𝑚̇)⊤ (Ω⊤𝑖 𝜑𝑖 + 𝜌𝑏𝐹𝑖) .
(48)

Finally, grouping terms, defining 𝜌𝑏 = 3𝜆 to cancel two terms,
the expression for 𝑉̇ is given by

𝑉̇ = −𝜌𝑝 𝑛1∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩Ω⊤𝑖 𝜑𝑖 + 3𝜆𝐹𝑖󵄩󵄩󵄩󵄩󵄩2 − 𝜌𝑑
𝑛∑
𝑖=𝑛1+1

󵄩󵄩󵄩󵄩𝑝𝑖 − 𝑚̇󵄩󵄩󵄩󵄩2

− 𝑛∑
𝑖=1

(𝜑⊤𝑖 Ω𝑖 + 3𝜆𝐹𝑖) 𝑚̇.
(49)

It was shown in Theorem 2 that the term ∑𝑛𝑖=1[𝜑⊤𝑖 Ω𝑖]𝑚̇
vanishes. It is shown in the appendix that ∑𝑛1 𝐹𝑖 = 0 to reach
the following final expression for 𝑉̇
𝑉̇ = −𝜌𝑝 𝑛1∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩Ω⊤𝑖 𝜑𝑖 + 3𝜆𝐹𝑖󵄩󵄩󵄩󵄩󵄩2 − 𝜌𝑑
𝑛∑
𝑖=𝑛1+1

󵄩󵄩󵄩󵄩𝑝𝑖 − 𝑚̇󵄩󵄩󵄩󵄩2 . (50)

Note that 𝑉̇ is negative semidefinite. Using LaSalle’s Invari-
ance Theorem, the system will converge to the largest invari-
ant set satisfying 𝑉̇ = 0. From (50) it follows that

Ω⊤𝑖 𝜑𝑖 + 𝜌𝑏𝐹𝑖 = 0, 𝑖 = 1, . . . , 𝑛1,
𝑝𝑖 = 𝑚̇, 𝑖 = (𝑛1 + 1) , . . . , 𝑛. (51)

Substituting these equilibrium conditions into the closed-
loop system (1), (2), and (37)–(39), then

̇𝜉𝑖 = 𝑚̇, 𝑖 = 1, . . . , 𝑛1, (52)

̈𝜉𝑖 = Ω⊤𝑖 𝜑𝑖 + 𝜌𝑏𝐹𝑖 + 𝑚̈, 𝑖 = (𝑛1 + 1) , . . . , 𝑛 − 1, (53)

̈𝜉𝑛 = Ω⊤𝑛 𝜑𝑛 + 𝜌𝑏𝐹𝑛 − 𝜌𝑚 (𝜉𝑛 − 𝑚) + 𝑚̈. (54)

Observe that all the agents converge to the same velocity 𝑚̇.
Besides, since 𝑝𝑖 = 𝑚̇, 𝑖 = (𝑛1 + 1), . . . , 𝑛, then 𝑝̇𝑖 = ̈𝜉𝑖 = 𝑚̈,𝑖 = (𝑛1 + 1), . . . , 𝑛. Then, (53) and (54) reduce to

0 = Ω⊤𝑖 𝜑𝑖 + 𝜌𝑏𝐹𝑖, 𝑖 = (𝑛1 + 1) , . . . , 𝑛 − 1, (55)

0 = Ω⊤𝑛 𝜑𝑛 + 𝜌𝑏𝐹𝑛 − 𝜌𝑚 (𝜉𝑛 − 𝑚) . (56)

Adding (55) and (56) for all 𝑖 and using the fact that∑𝑛𝑖=1 𝜑⊤𝑖 Ω𝑖 = 0 and Proposition A.1, (56) can be simplified to𝜌𝑚(𝜉𝑛 − 𝑚) = 0, which shows that the leader agent trajectory
converges to𝑚(𝑡). Thus, it is concluded that agents converge
locally to the desired formation tracking.

Finally, note that the Lyapunov function is radially
unbounded, that is, tends to infinity when any 𝑟𝑖𝑗 → 0. Since
the agents do not collide at 𝑡 = 0 by the initial assumption and𝑉̇ ≤ 0, it is clear that distance between agents 𝑟𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑁
will never be equal to zero, and therefore the agents do not
collide.

Remark 8. A distance-based only approach allows for sym-
metric solutions to appear that may be undesired in some
situations. The introduction of oriented area terms 𝐹𝑖 elim-
inates those solutions. However, other undesired equilibria
may appear, similar to what was discussed in Remark 4.

6. Numerical Simulations

6.1. Distance-Based Formation Control. In this section, a
numerical simulation of the control strategy analyzed in
Section 3 is presented with 𝑛 = 4 and 𝑛1 = 2 (𝑅1 and 𝑅2 are
first-order agents; 𝑅3 and 𝑅4 are second-order agents), with
the complete DFG shown in the Figure 3 where the desired
interagent distances are given by 𝑑12 = 𝑑23 = 𝑑31 = 5 and𝑑14 = 𝑑24 = 𝑑34 = 5/2 cos(𝜋/6) (an equilateral triangle with
side equal to 5 formed by agents𝑅1,𝑅2, and𝑅3 and the leader
agent 𝑅4 placed in its center).

The leader agent 𝑅4 follows a circled-shape trajectory
given by

𝑚(𝑡) = [10 sin( 2𝜋160𝑡) , 10 cos( 2𝜋160𝑡)] . (57)

The control parameters of the control law given by (9), (10),
and (11) are 𝜌𝑝 = 1, 𝜌𝑑 = 1, and 𝜌𝑚 = 0.4.

The trajectories of the agents in the plane are shown in
Figure 4(a), where the symbols ∘ are the initial positions𝜉1(0) = [4, 0], 𝜉2(0) = [3, 3], 𝜉3(0) = [−1, −1], 𝜉4(0) = [2, 5].
Some postures of the agents are depicted in the time instants𝑡 = 40, 𝑡 = 75, 𝑡 = 100, 𝑡 = 125, and 𝑡 = 150, respectively.
Note that the agents converge to the desired formation, and



8 Complexity

R1

d12

d14

d24

d23

d34

d13

R4

R2 R3

Figure 3: Simulation 1 setup of the distance-based formation control with 𝑛 = 4 and 𝑛1 = 2.

−10

−5

0

5

10

50 10−10 −5

X

Y

R1

R2

R3

R4 (leader)
m(t)

(a) Trajectories of the agents in the plane

−2

−1

0
1
2
3
4
5
6

50 100 1500
Time

12

13

14

23

24

34

(b) Distance formation errors

500 150100
Time

−5

−4

−3

−2

−1

0
1

em

em

(c) Trajectory tracking error of the leader agent

Figure 4: Simulation 1 results of distance-based formation with 𝑛 = 4, 𝑛1 = 2.
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the leader follows the trajectory 𝑚(𝑡) as is shown in Figures
4(b) and 4(c), where the formation errors 𝜑𝑖𝑗 and the error of
the trajectory tracking of 𝑅4, that is, 𝑒𝑚 = 𝜉4 −𝑚, converge to
zero, respectively.

Note that the agents do not collide because the values
of distance between agents, given by 𝑟𝑖𝑗, ∀𝑖, 𝑗 as shown in
Figure 5(a), are strictly greater than zero. Finally, the control
inputs are depicted in Figure 5(b).

6.2. Distance and Area Based Formation Control. Figure 6
shows the second simulation scenario for the control law that
uses distances and area. It uses the same desired formation,
leader trajectory, initial conditions, and control parameters
as in the previous simulation. However, the formation graph
is not complete since the edges (2, 4) and (3, 4) have been
eliminated. Now, a planar topology is set as in (35) with𝑀2 ={(1, 2, 4), (1, 3, 4)} as shown in Figure 6, with the desired areas
being 𝛼⋆124 = −𝛼⋆134 = 52√3/12. The control parameters for
the areas are set to 𝜌𝑎 = 𝜌𝑏 = 0.5.

Some postures of the agents are depicted in the time
instants 𝑡 = 40, 𝑡 = 75, 𝑡 = 100, 𝑡 = 125, and 𝑡 = 150, in
Figure 7(a). Observe that the agents converge to the desired
formation, with distance and area errors converging to zero as
shown in Figures 7(b) and 7(c). Besides the leader follows the
desired trajectory 𝑚(𝑡) as is shown in Figure 8(a). Similarly
to the previous simulation the agents do not collide as shown
in Figure 8(b). Finally, the control inputs are depicted in
Figure 8(c).

7. Conclusions

This paper addresses the case of formation tracking of a
combined set of first- and second-order agents in an undi-
rected graph communication. The approach is based on the
measures of distance and orientation between agents using a
family of distance-based functions with interagent collision
avoidance. The approach ensures the local convergence of
the formation errors to zero. The control law is completed
with signed area constraints related to triplets of robots.
The subset of robots involved in these new restrictions
constructs a planar topology. The combination of the two
formation strategies results in a versatile control setup, where
undesired final patterns and local minima can be eliminated.
Simulation results show the performance of the control laws.
Future work will include the analysis of directed and mixed
communication graphs, further analysis on local minima and
local sensormismatch, the extension for the case of first-order
kinematic models of omnidirectional agents moving on the
plane together with second-order dynamical models of aerial
agents moving in the space, and the experimentation of the
distance and areameasurements using local onboard sensors.

Appendix

Proposition A.1. For a set of n agents with planar topology
given by (35) the area errors in a given configuration satisfied
the equation

𝑛∑
𝑖=1

𝐹𝑖 = 𝑛∑
𝑖,𝑗,𝑘=1

𝑏𝑖𝑗𝑘𝑒𝑖𝑗𝑘r⊤𝑗𝑘𝐻 = 0. (A.1)

Proof. The proof is shown by induction. For the first step
let 𝑛 = 3, write the expression for 𝐹𝑖 explicitly, and use the
properties of𝐻, r𝑖𝑗, and 𝑒𝑖𝑗𝑘.
3∑
𝑖=1

𝐹𝑖 = 3∑
𝑖,𝑗,𝑘=1

𝑏𝑖𝑗𝑘𝑒𝑖𝑗𝑘r⊤𝑗𝑘𝐻
= (𝑒123r⊤23 + 𝑒132r⊤32++ 𝑒213r⊤13 + 𝑒231r⊤31 + 𝑒312r⊤12 + 𝑒321r⊤21)𝐻= 2 (𝑒123r⊤23 + 𝑒231r⊤31 + 𝑒312r⊤12)𝐻.

(A.2)

Since 𝑒𝑖𝑗𝑘 is invariant for a circular shift of indexes, the right
hand side becomes

3∑
𝑖=1

𝐹𝑖 = 2𝑒123 (r⊤23 + r⊤31 + r⊤12)𝐻 = 0. (A.3)

Assuming now that it is true for 𝑛 = 𝑠 − 1, in the next step𝑛 = 𝑠, (A.1) is given by

𝑠∑
𝑖=1

𝐹𝑖 = 𝑠∑
𝑖,𝑗,𝑘=1

𝑏𝑖𝑗𝑘𝑒𝑖𝑗𝑘r⊤𝑗𝑘𝐻
= 𝑠−1∑
𝑖,𝑗,𝑘=1

𝑏𝑖𝑗𝑘𝑒𝑖𝑗𝑘r⊤𝑗𝑘𝐻 + 𝑠−1∑
𝑗,𝑘=1

𝑏𝑠𝑗𝑘𝑒𝑠𝑗𝑘r⊤𝑗𝑘𝐻
+ 𝑠−1∑
𝑖,𝑘=1

𝑏𝑖𝑠𝑘𝑒𝑖𝑠𝑘r⊤𝑠𝑘𝐻 + 𝑠−1∑
𝑖,𝑗=1

𝑏𝑖𝑗𝑠𝑒𝑖𝑗𝑠r⊤𝑗𝑠𝐻.
(A.4)

The first summation of the right hand side is zero because of
the induction hypothesis. In order to group terms a change of
indexes is performed to have all the summations in terms of𝑗 and 𝑘, giving the following:
𝑠∑
𝑖=1

𝐹𝑖 = 𝑠−1∑
𝑗,𝑘=1

(𝑏𝑠𝑗𝑘𝑒𝑠𝑗𝑘r⊤𝑗𝑘 + 𝑏𝑗𝑠𝑘𝑒𝑗𝑠𝑘r⊤𝑠𝑘 + 𝑏𝑘𝑗𝑠𝑒𝑘𝑗𝑠r⊤𝑗𝑠)𝐻. (A.5)

Since 𝑏𝑠𝑗𝑘 = 𝑏𝑗𝑠𝑘 = 𝑏𝑘𝑗𝑠 by the undirected property of the
topology and 𝑒𝑠𝑗𝑘 = −𝑒𝑗𝑠𝑘 = −𝑒𝑘𝑗𝑠, further simplifications lead
to

𝑠∑
𝑖=1

𝐹𝑖 = 𝑠−1∑
𝑗,𝑘=1

(𝑏𝑠𝑗𝑘𝑒𝑠𝑗𝑘r⊤𝑗𝑘 − 𝑏𝑠𝑗𝑘𝑒𝑠𝑗𝑘r⊤𝑠𝑘 − 𝑏𝑠𝑗𝑘𝑒𝑠𝑗𝑘r⊤𝑗𝑠)𝐻
= 𝑠−1∑
𝑗,𝑘=1

𝑏𝑠𝑗𝑘𝑒𝑠𝑗𝑘 (r⊤𝑗𝑘 − r⊤𝑠𝑘 − r⊤𝑗𝑠)𝐻 = 0,
(A.6)

because the term inside the parenthesis is identically zero.
Thus, the induction step is complete.
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