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a b s t r a c t

In this paper an alternative method to achieve distance based formation is presented. The method uses
Genetic Algorithms to find a suitable solution based on angle and distance, and an appropriate constant
velocity to avoid collisions. The designed algorithm is extended to a parallel scheme to improve its
performance and achieve Artificial Distributed Intelligence, in which the robots share, through solution
migration, the best ways to converge to desired distances while avoiding collisions, finally reaching
consensus on the solution. The algorithm is tested using simulations and real robots experiments.
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1. Introduction

Researchers of the fast growing field of Multi robot systems
(MRS) focus on the idea that there is strength in numbers, as
presented in Dudek’s example [1] of a task that requires simulta-
neous operation where the restrictions of a single robot system
is overcome by a MRS.

MRS made out of a large number of simple and cheap robots
could have better performance than individual highly specialized
and costly robots, mainly because: with more robots exploration
of a wider spatial area can be faster and distributed specialized
jobs can be carry out by different team members if the MRS is
heterogeneous. Another important characteristic of MRS is redun-
dancy, a large number of robots support each other carrying out
teammates task if the robots fails to achieve the mission [2].

There is a lot of research in MRS on designing appropriate
coordination strategies and control laws that enable them to
achieve objectives efficiently together [3–5].

Coordination strategies include various problems that aim to
drive a group of agents to some common state, this is usually
called consensus, agreement, synchronization or rendezvous, in
this paper this strategies are referred as the consensus problem,
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extensively studied in [6,7], modelling robots with single integra-
tor and using graph theory describe topology, ergo, connections
between robots.

Control laws are designed to achieve consensus avoiding in-
ter robot interference [8]. Global convergence, group stability,
group following and other characteristics are studied through
their topology graphs [2].

Some variables where robots can achieve consensus are, po-
sition, displacement or distance with regard to other robots, this
kind of consensus is called formation control [9].

This consensus behaviours are supposed to be applied in ex-
ploration and mapping, security and surveillance tasks, biological
systems simulations and others [4,10].

In our previous work, we studied the distance based for-
mation [11,12] with area restrictions [13] and marching con-
trol in [14], using Lyapunov type strategies based on attrac-
tive/repulsive position or distance based potential functions,
called error based gradient strategies.

The main disadvantage of this exact consensus strategies is
the complexity of mathematical operations needed to achieve the
aimed formation, this can be augment by the mathematical model
of the robots and a large number of robots. Another approach to
the formation problem is the use of metaheuristic algorithms or
computational models. Particle swarm optimization (PSO) [15],
Artificial neural networks [16], A* algorithm [17], Finite estates
machines (FEA) [18], Ant colony optimization (ACO) [19] and
many others have been used to achieve different types of for-
mation. Most of the metaheuristic algorithms cannot guarantee
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optimality or even a feasible solution, but their use is intended to
simplify the mathematical burden of exact strategies.

Other disadvantage of exact strategies, like the error based
gradient strategies, is that they are effective but isolated in each
robot, most consensus strategies can be denominated as reaching
decentralized agreement.

There are three levels of multi robot interaction, coordination,
cooperation and collaboration [20]. Coordination occurs when
robots are aware of each other and share a common space, work-
ing around each other to minimize mutual interference, hence
their actions do not help other team members achieve their goals.
Cooperation happens when robots share goals and their conjoint
actions are beneficial to all teammates, so multiple robots work
together and reason about each other’s capabilities in order to
accomplish a joint task. Collaboration arise when robots have
individual goals, but they are aware of their teammates goals and
capabilities, and their individual actions help advance their goals
and others’ goals.

In this context consensus strategies barely cooperate by com-
municating position, velocities and accelerations, these strategies
mainly coordinate the robots.

Metaheuristic strategies are better at collaboration between
robots. Collaboration in a MRS is achieved through Distributed Ar-
tificial Intelligence (DAI). The DAI field is mainly concerned with
problems involving agents working together solve problems [21].
The advantages of distributing processes are flexibility and ro-
bustness, through redundancy and parallelism. The knowledge
based DAI paradigm focuses on information sharing between
robots, in order to allow them to use such awareness to solve
group problems [20].

One of the most important and powerful algorithm used is
the metaheuristic Genetic algorithms (GAs) [22–25]. A GA is a
arbitrary search and optimization algorithm which mimics bio-
logical evolution. Introduced in 1975 by Professor Holland [26],
GAs have characteristics of powerful self adaptive capability and
global parallel optimization [27,28].

Because evolution is a highly parallel process, one of the
greatest strengths of GAs is parallelism [29]. Parallel Genetic
Algorithms (PGAs) [30,31] are being used to solve hard problems.
As the complexity of a problem increases, GAs need a bigger pop-
ulation, this translates directly into higher computational costs.
The logic behind PGAs is to reduce the processing time needed to
reach an acceptable solution. Comparing serial GAs to PGAs, using
different parallel architectures, better solutions can be found, in
less time, with these latter [32,33]. As stated in [34] the most
important characteristic of DAI is combining the computational
resources of the group augmenting group intelligence over indi-
vidual agents capabilities. This is very related to PGAs, using the
parallel computational power of many agents might improve the
solution for the group objectives.

2. Related work

While metaheuristic algorithms are widely used for multi
robot path planning [35,36], in the field of MRS, GAs and PGAs
have been used scarcely to achieve formation. This fact is due
to the distinction of deliberative and reactive schemes for MRS
formation [37].

Many works use GAs for parameter tunning [38]. In [39] au-
thors exploit these algorithms to tackle the multi robot coalition
formation problem, using multiobjective PGAs. A Voronoi global
planer is mixed with a GA based on artificial potential models
in [40] to achieve motion planning of robot swarms. Genci Capi
and Zulkifli Mohamed [41] used GAs to create artificial neural
networks that control each robot in the formation.

Kobayashi, Tomita and Kojima in [42] present a reformation
algorithm based on GAs, with an obstacle avoidance achieved

through Q-Learning. The algorithm presented acts as a reactive
algorithm that maintains formation using distance rules, while
avoiding collisions. Nevertheless, the robots’ initial conditions
start at the desired formation, and the algorithm is isolated in
each robot, there is not any communication between robots.

Nazarahari, Khanmirza and Samira Doostie in [43] use an
hybrid GA with potential fields to solve the multi robot path
planning problem. The algorithm is tested using simulations on
different scenarios, and compared to other search algorithms.
While this scheme approaches to the presented work, the GA’s
are used to optimize the original potential field trajectories. It is
also a centralized algorithm without distribution amongst robots.

As depicted in [44,45] PGAs have been used for fast path plan-
ning, with excellent results, but not as distributed intelligence for
MRS. The parallel processes allow improvement in convergence,
beyond that this paper intends to demonstrate that it could also
be used as DAI in MRS [46].

3. Research objectives

The objective of this research is to evaluate the use of meta-
heuristics as fast reactive control in MRS. In MRS metaheuristics
are usually used as planners for paths, task distribution or pro-
cess optimization, mainly as deliberative strategies. But with the
recent advances in microcontrollers, microcomputers and com-
munication devices, fast calculations of metaheuristic algorithms
(non exact strategies) might prove better than mathematically
dense exact strategies. The main hypothesis is that a MRS could
combine the processing power of all agents in order to solve in
real time the consensus problem, reaching DAI.

The central contribution of this paper is a distance based
formation control PGA. The main features of the approach are the
next points:

• Distance based formation is achieved using distance and
angle, while collision avoidance is achieved through veloc-
ity control. Using GAs and PGAs as control laws not path
planing algorithms.

• The distance based formation GA is conceived as a parallel
algorithm, robots share their own solutions, improving solu-
tions and accelerating convergence time for all robots, hence
it can be considered as DAI.

• This approach works for n robots, modelled as single inte-
grators. It becomes a general result, because distinct non-
holonomic robots can be moved using an appropriate in-
put/output linearization [11].

• The approach is validated in appropriate numerical simula-
tions and real time experiments.

The rest of this paper is organized as follows, Section 4 de-
scribes the MRS distance based formation problem, describes the
main algorithm proposed and Sections 4.1 and 4.2 present sim-
ulation results for the simple and parallel schemes respectively,
Section 4.3 explains the main results presented using real robots,
all results are analysed on Section 5, finally Section 6 explains the
conclusions and work ahead.

4. Distance based formation using GA

MRS distance based formation problem is defined as follows,
consider N = [R1, . . . , Rn] as a group of mobile robots with
Cartesian positions ξ = ξ1, . . . , ξn, with ξi = [xi, yi], i = 1, . . . , n
respectively. An elementary mathematical model for a robot is
given by

ξ̇i = ui ∈ R2, i = 1, . . . , n (1)
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Fig. 1. GA chromosomes.

with ui being the vector velocity for the robot Ri. Eq. (1) intro-
duces the single integrator mobile robot model, that helps to
simplify the formation control laws analysis [6,9].

A distance based formation graph is given by G = {Q , E,D},
where Q = {R1, R2, . . . , Rn} refers to the vertices, E = {(j, i) ∈

Q×Q } includes the edges formed by pairs of nodes that represent
inter robots connections, hence (j, i) ∈ E if j ∈ Ni, and D = {dji},
∀(j, i) ∈ E defines the desired distances between robots i and j,
i.e.

ξi − ξj
 = dij ∈ R, ∀i ̸= j, j ∈ Ni in a desired formation

pattern.
A well defined distance based formation graph must satisfy

that dij = dji for all (j, i) ∈ E, and the graph must be connected,
i.e. there are no isolated nodes.

The proposed GA achieves two objectives, distance based for-
mation and collision avoidance using the proposed formation
chromosome for solving the necessary trajectory is shown in
Fig. 1. The formation chromosome is composed by N vectors, de-
scribed with angle and distance indicating the suggested motion
for every robot in order to achieve the distance based formation
between robots, hence, the robots must execute linear trajectories
to reach formation. The validity of each trajectory is evaluated
using distance error between robots. Fig. 2a depicts two point
robots with initial positions P1 and P2 moving at angles θ1 and
θ2, distances d1 and d2 to achieve a final distance between robots
d12.

Due to the linear trajectories proposed to complete distance
based formation collisions can occur. Collision point depends on

the vector magnitude and angle, but also on the robot dimension.
To avoid collisions on the linear path, the velocities for each robot
are calculated using the collision avoidance chromosome shown
in Fig. 1. Given a safety radius rn for each robot, a robot velocity
is calculated comparing, the position along the vector trajectory
for each time t , against the position for each other robots at the
same time in their respective paths. The comparison is based on
the number of intersections between safety circles with radius rn.
As shown in Fig. 2b two robots with radius r1 and r2 are bound
to collide having the same distance d1 and d2 to travel, at the
same speed (V1 = V2). Fig. 2c depicts a similar situation were the
velocities differ enough for the robots not to collide, if V1 < V2
the second robot arrives first to its final position, followed by the
first robot, avoiding collisions.

This GA solves sequentially the movement vectors, then the
appropriate velocities to avoid collision. Although the two prob-
lems, distance formation and collision avoidance, could be solved
using a multi objective GA attempts of doing so exhibit too many
mathematical operations and extremely long times, this due to
calculating for each robot the collision with other robots for every
vector solution of the population.

Fig. 3 presents the two algorithm phases, formation and obsta-
cle avoidance. Given the initial conditions; number of robots N ,
number of solutions in the population n, crossover probability CP ,
mutation probability MP , desired distances D = {dji}, and aimed
precision PD, a random initial population is created, composed of
n solutions as shown in Fig. 1, with 180◦ > θi ≥ −179◦ and
0 mm > di ≥ 10,000 mm.

This random initial population is subjected to crossover and
mutation, Fig. 4 displays the crossover and mutation operator
procedure.

For the crossover, two solutions from the initial population are
randomly selected and called parents, the crossover probability
CP determines the probability percentage of the parents crossing.
A first random number between 0 and 1 compared to the CP
establish if the parents are to mate and reproduce, for example, if
CP = 0.9 every random number less or equal than 0.9 will force
the parents to mate. If the crossover is positive another random

Fig. 2. Formation example with collision.
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Fig. 3. Proposed GA.

Fig. 4. Crossover and mutation operators.

number selects the crossover point as shown in Fig. 4, then two
new solutions, called offspring are created.

The mutation operator evaluates each gene from every so-
lution and, if the mutation probability MP falls between the
mutation range for example, if MP = 0.1 every random number
less or equal than 0.1 changes just one gene to a random number
inside the appropriate distance or angle range, as presented in
Fig. 4.

There are no clear procedures to select CP and MP , but usually
parameter values are mostly selected by conventions [47], CP
usually selected high, has a high probability to generate diversity,
and commonly low probability is assigned to MP in order to exit
local minima.

The next step is to create a new population, composed by the
initial population plus the crossed initial population adding the
initial and crossed populations subjected to mutation, this step
creates an extended population of 4×n elements. This population
is subjected to an elitist selection, which consist in choosing a
new improved population of size n, 50% of the solutions for the
new population consist of the best possible solutions, the elite.
The rest of the elements for the new population are selected by
tournament.

This population is evaluated with the first fitness function,
final distance between robots. Each solution is evaluated to de-
termine the Euclidean distances between robots. Then those dis-
tances with the desired final distance D = {dji} are used to
calculate the error norm. If the error norm of all the solutions
is greater than the desired precision, PD, the GA restarts using
the elite population as the new initial population. Otherwise, GA
training is over and obstacle avoidance GA begins.

The obstacle avoidance phase uses the same algorithmic pro-
cedure as the formation phase, using the velocity chromosome
shown in Fig. 1. The GA operators work in the same way, the

evaluation quantifies the number of collisions that occur with
each solution. Then the fitness function aims to find a collisions
free solution, once such solution is found the algorithm ends. In
some cases, when the iterations end, collision free solution cannot
be found. In such cases, the distance phase is reinitialized and
another solution is found, this is possible thanks to the multiple
solutions available for the distance based formation.

4.1. Simulations

Using Matlab R⃝ 2017a running on an 64 bits Windows 10 R⃝

computer, with a Intel R⃝ core i7-4500 CPU and 8 GB of RAM,
a simulation was made. Considering four robots N = 4, being
PD = 80 mm, CP = 0.95, MP = 0.1, n = 1000, robot safety
radius r = 150 mm, velocity range 10 ≤ V ≤ 666 in mm/s, initial
position ξi = [xi, yi] and desired distance D = {dji} in mm as:

ξ =

(
5000 −5000 −5000 5000
5000 5000 −5000 −5000

)
(2)

D =

⎛⎜⎝ 0 500 500 707.1068
500 0 707.1068 500
500 707.1068 0 500

707.1068 500 500 0

⎞⎟⎠ (3)

Fig. 5a depicts the generated solution vectors and the collision
avoidance speed. The obtained chromosome for this solution is

[θi, di] =

(
−138.34 −30.33 44.84 122.24
5495.28 7421.02 8253.64 6838.71

)
(4)

this matrix contains four columns that include angle and length
that depicts the intended distance and orientation each robot will
have to execute to achieve the desired final distances. The second
result is the robots velocity which will guarantee no collision
between robots

Vi =
(
166.94 565.78 343.31 38.01

)
(5)

It is easy to note the first and second robot (coloured red and blue
respectively) collide. Fig. 5b shows the robot advance, the circles
represent the safety radius, the spacing between circles repre-
sents the velocity, the more space, the higher velocity. Hence, the
blue robot advances faster than the red robot, arriving first to the
final position avoiding collision.

Efficiency measures where taken upon one thousand runs of
the algorithm, epoch and time results are displayed on Fig. 6.
Considering same initial conditions as the last experiment results
are shown in Table 1, including maximum and minimum, mean
and mode of times and epochs.
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Fig. 5. 4 robots simulation.

Fig. 6. 4 robots simulation statistics.

Fig. 7. 9 robots simulation statistics.

Table 1
Simple GA statistics.
1000 Runs 4 robots simple GA 9 robots simple GA

Max Time 189.92 200.0468
Min Time 0.9075 10.8834
Time Mean 9.3566 26.2794
Time Mode 0.90753 10.8834
Max Epoch 54 809
Min Epoch 17 161
Epoch Mean 34.85 248.392
Epoch Mode 36 229

While the number of epochs and the time overall for each sim-
ulations is acceptable, once the algorithm is tested using higher
number of robots the performance begins to decline. Fig. 7 shows
the results for one thousand runs of the algorithm for N = 9

robots, being PD = 80 mm, CP = 0.95, MP = 0.1, n = 1000,
robot safety radius r = 150 mm, velocity range 10 ≤ V ≤ 666 in
mm/s, initial position ξi = [xi, yi] and desired distance D = {dji}
in mm as Eq. (7) is given in Box I:

ξ =

(
5000 0 −5000 −5000 5000 0 −5000 5000 0
5000 5000 5000 0 0 −5000 −5000 −5000 0

)
(6)

The analysis presents an increase of time and number of
epochs needed to achieve formation with collision avoidance.
Statistical results are shown on Table 1. This represents a non
proportional raise of almost 3 times the time mean, and near
thirteen times the mode with regard to the four robot simulation.
The proposed solution is to use parallelism.
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D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 800 1600 800 1131.3 1788.8 1600 1788.8 2262.7
800 0 800 1131.3 800 1131.3 1788.8 1600 1788.8
1600 800 0 1788.8 1131.3 800 2262.7 1788.8 1600
800 1131.3 1788.8 0 800 1600 800 1131.3 1788.8
1131.3 800 1131.3 800 0 800 1131.3 800 1131.3
1788.8 1131.3 800 1600 800 0 1788.8 1131.3 800
1600 1788.8 2262.7 800 1131.3 1788.8 0 800 1600
1788.8 1600 1788.8 1131.3 800 1131.3 800 0 800
2262.7 1788.8 1600 1788.8 1131.3 800 1600 800 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

Box I.

Fig. 8. Parallel GA.

4.2. Parallel GA

Simulations show that parallel GA improve the algorithm per-
formance. The proposed parallel GA is displayed in Fig. 8. The pro-
cedure changes the simple GA running in parallel N algorithms,
each one with its own population and operators, adding the
migration operator in which the best elements of each population
are shared periodically.

Using the same equipment and software shown in Section 4.1,
parallelism was simulated, executing sequentially each algorithm
until the migration epoch, during migration epoch each of the
algorithms would use its own elite population adding all of the
others elite population to the selection process. Then the algo-
rithms would restart using the best elements of all algorithms
as new population. The performance measurements were car-
ried out using the maximum indicators (maximum time and
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Fig. 9. Final position for the parallel GA.

Fig. 10. Error norm vs. epochs.

epochs) among the algorithms executed. Matlab parallel comput-
ing toolbox was not used because, in the multi core parallelism
Matlab automatically generates multiple simultaneous streams of
instructions, which, even though it optimizes the algorithm, does
not represent the capabilities of a multi robot system, and using
a distributed computing system or cluster of several computers
was not viable with our research budget.

The migration process generates a distributed intelligence
scheme. In order to demonstrate the multi robot distance based
formation parallel GA, simulations were conducted using four
robots. Considering the robots start at the initial positions ξi =

[xi, yi], all four GAs use it as starting searching points.
Each of these four GAs running in parallel has the same pro-

cesses for mutation, crossing, and elitism, also the same operator
constants (PD, CP ,MP) as indicated in Section 4.1. It was chosen in
this way to be able to compare the changes integrally when mov-
ing to a parallel scheme. Although these variables could change
to increase diversity and accelerate the speed of convergence,
these changes were relegated to the next phase of development
as established in Section 6.

Fig. 9a depicts, the final positions of four GA running in par-
allel without solutions migration, it can be seen that each GA
separately achieves the desired distances, but with very different
positions and velocities. The graph in Fig. 9b adds migration
every three epochs, the four GA then arrive at the same solution,
agreeing not only on the distance and velocity, but also the final
solution. Error graphs in Fig. 10a shows the error norm conver-
gence of the parallel GA without migration, it takes more than 60
epochs for all GA’s to arrive at their solutions. Contrasting, Fig.
10b, takes all parallel GA’s with migration less than 50 epochs to
arrive at the common solution.

Statistical results of parallel GA’s one thousand simulations
with nine robots are shown in Fig. 11. For the parallel GA the
maximum time and epoch value is used on every iteration. The

Table 2
Simple vs. parallel GA.
1000 Iterations 9 robots simple GA 9 robots parallel GA

Migration None Every 10 epochs
Max Time 200.0468 22.0407
Min Time 10.8834 6.3095
Time Mean 26.2794 11.0488
Time Mode 10.8834 9.9040
Max Epoch 809 365
Min Epoch 161 102
Epoch Mean 248.392 146.408
Epoch Mode 229 151

performance in epochs and time is compared against the simple
GA on Table 2, noting improvement in all aspects.

4.3. Experiments

The approach is tested using the four wheeled mobile robots
with mechanum wheels shown in Fig. 12. The posture kinematic
model for the omnidirectional robots is described by⎡⎣ẋi

ẏi
θ̇i

⎤⎦ =

[cos θi − sin θi 0
sin θi cos θi 0
0 0 1

]
  

R(θi)

[
vxi
vyi
ωi

]
(8)

The robots are actuated by Dynamixel servomotors AX − 12
W, and controlled by a microcontroller NXP R⃝ model LPC1768
with Bluetooth communication to a Windows 7 R⃝ 64 bits PC
computer, with Intel R⃝ core i7 − 4770 and 16 GB RAM. The
position and orientation of the robots were measured by a Vicon R⃝

motion capture system composed by 6 cameras model Bonita R⃝.
The motion capture measures within an available workspace area
of 3 × 7 m. Reflective markers were placed on the top of the
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Fig. 11. 9 robots parallel simulation statistics.

Fig. 12. Omnidirectional wheeled mobile robot.

Fig. 13. Omnidirectional wheeled mobile robot diagram.

robots in order to be identified by the Vicon R⃝ system. The control
algorithm runs at a 117 ms rate with a resolution of ±5 mm.

According to the diagram shown in Fig. 13, the velocities of
each wheel can be calculated by⎡⎢⎣ω1

ω2
ω3
ω4

⎤⎥⎦ =
1
r

⎡⎢⎣ 1 1 − (L + l)
−1 1 (L + l)
−1 1 − (L + l)
1 1 (L + l)

⎤⎥⎦[vxi
vyi
ωi

]
, i = 1, . . . ,N (9)

with Vi =

√
v2
xi + v2

yi and using L = 10 cm, l = 5 cm and
r = 2.75 cm.

In order for the robots to achieve the distance, angle and ve-
locity (di, θ∗

i , Vi) obtained from the GA and converted to cartesian
coordinates (x∗

i , y
∗

i ), as shown in Fig. 14, the control law uses the
input/output linearization given by[

vxi
vyi
ωi

]
= R−1(θi)

⎡⎣ fxi
fyi
fωi

⎤⎦ , i = 1, . . . ,N (10)

Fig. 14. Robot control diagram.

with

fxi =
Vi√

fx2i +fy2i +ϵ

fyi =
Vi√

fx2i +fy2i +ϵ

(11)

while fxi = −k(xi − x∗

i ), fyi = −k(yi − y∗

i ) and fωi = −kθ (θi − θ∗

i ),
using ϵ = 0.001, k = 100 and kθ = 10.

The parallel scheme for this experiments was achieved using a
master/slave model. The computer is considered the master and
the robots the slaves. The master is in charge of the fitness selec-
tion over an extended population (sum of all slaves populations)
and sending the new elite population to the slaves, then wait for
the slaves to finish his processes to receive the new elements
of the population from each robot. The slaves are in charge of
realizing the crossover, mutation and selection operators on the
received population and transmitting the new population. This
communication is synchronous, once all robots are ready, the
population transmission begins. All the slaves have the same
number of elements, and the same operators characteristics (PD,
CP , MP).

For the first experiment the experimental set up with four
robots N = 4 uses PD = 80 mm, CP = 0.95, MP = 0.1, n = 1000,
robot safety radius r = 150 mm, velocity range 10 ≤ V ≤ 666 in
mm/s, initial position ξi = [xi, yi] and desired distance D = {dji}
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Fig. 15. First experiment robots’ trajectory.

Fig. 16. First experiment robots’ final distance.

in mm as:

ξ =

(
−2125.07 811.45 −1639.24 1438.03
895.30 768.41 −890.00 −917.69

)
(12)

D =

⎛⎜⎝ 0 500 500 707.1068
500 0 707.1068 500
500 707.1068 0 500

707.1068 500 500 0

⎞⎟⎠ (13)

The results are presented in Figs. 15, 16 and 17. The algorithm
takes 29 epochs to get the final results, the final angle and
distance for each robots are:

[θi, di] =

(
−41.91 −135.47 1.15 155.28
2347.48 1375.13 1731.42 1253.07

)
(14)

As seen on Fig. 15 the real robots follow the path traced by the
solution, and arrive close to the final position.

Fig. 16 shows the final distance evolution between the robots
as expected in Eq. (13). The algorithm’s calculated velocities
are:

Vi =
(
499.69 233.33 472.98 166.72

)
(15)

Fig. 17 depicts the real robot velocities compared to the ones
calculated by the algorithm, the velocities drop to zero once the
robot arrives at the final position.

A second experiment uses PD = 80 mm, CP = 0.95, MP = 0.1,
n = 1000, robot safety radius r = 150 mm, velocity range 10 ≤

V ≤ 666 in mm/s, being desired distance D same as in Eq. (13)
and initial position ξi = [xi, yi] as:

ξ =

(
−1887.31 1444.47 −2186.78 1429.23
1126.82 141.62 −929.52 −238.81

)
(16)

The results are presented in Figs. 18, 19 and 20. The algorithm
takes 176 epochs to get the final results, the final angle and
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Fig. 17. First experiment robots’ velocities.

Fig. 18. Second experiment robots’ trajectory.

distance for each robots are:

[θi, di] =

(
−26.55 174.15 50.11 175.5
1118.76 1927.02 1545.33 2271.58

)
(17)

Observing Fig. 18 it can be seen that the omnidirectional robots
follow the path traced by the GA’s solution, and arrive close to
the final position.

Fig. 19 shows the final distance evolution between the robots
as expected in Eq. (13). The algorithm’s calculated velocities
are:

Vi =
(
124.62 545.50 437.93 250.85

)
(18)

Fig. 20 depicts the real robot velocities compared to the ones
calculated by the algorithm.

5. Discussion

Simulations results given in Section 4.1 present concept proof
of the proposed distance based formation GA and performance
upgrade using parallelization. It is feasible to reach consensus in
a MRS using DAI through PGAs but more research on performance
is needed.

The obstacle avoidance phase is not the best way to achieve
collision avoidance. The simulations and experiments used a low
number of robots, and while most of the time the obstacle avoid-
ance GA found solutions, sometimes it was difficult or impossible
to find solutions, hence the iterative process had to be restarted.
Increasing the number of robots will make it harder for the
algorithm to find a collision free solution.

The experimental results presented in Section 4.3 were aimed
towards the viability of implementation for the distance based
formation GA. The results explore the comparison between the
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Fig. 19. Second experiment robots’ final distance.

Fig. 20. Second experiment robots’ velocities.

real position, velocity and distance of the real robots versus the
simulations. During the experiments some data were obtained
on the computation times, however the timing and character-
istics of the synchronous transmission by means of Bluetooth,
obscured the clear identification of trends on the performance of
the parallel algorithm.

Time complexity analysis. An important part of computational
complexity theory is time complexity analysis. It is used to de-
scribe an algorithm’s use of computational resources through
the worst case running time, usually expressed using the big
Omicron (abbreviated as big-O) notation [48–50]. There is been
a lot of work on time complexity analysis for evolutionary algo-
rithms, including genetic algorithms, evolutionary programming
and evolutionary strategy [51–56], to mention a few.

The GA’s proposed in this paper, as described on Section 4,
both simple and parallel algorithms include premature ending
conditions, for the formation phase a lower error norm than that
of the desired precision ends the algorithm, and the obstacle
avoidance phase ends once a collision free solution is found. This
conditions make it difficult to count the algorithm’s number of

instructions, hence the time complexity analysis was achieved
using curve fitting for the time results [53].

The non parallel GA with collision avoidance was executed
1000 times, keeping track of the time and the number of itera-
tions in which the algorithm reaches consensus. The time results
versus the number of iterations are shown in Fig. 21. Fig. 21a
depicts the fitted curve, a linear second grade polynomial fitting,
f (x) = p1x2 + p2x + p3 with coefficients p1 = 0.005583, p2 =

−1.502 and p3 = 39.68. Fig. 21b shows an exponential fitted
curve f (x) = aebx with coefficients a = 58.27 and b = 0.004638.
Both fittings were made using all unfiltered data, no outliers
detection was made because outlier detection algorithms tend
to eliminate most of the points from more than 500 iterations,
indicating a linear behaviour.

Table 3 has the goodness fit for both curves, using the sum
of squares due to error (SSE), R2, adjusted R2, and root mean
squared error (RMSE) measurements. It is appropriate to note
that the closest SSE and RMSE indicators to 0 belongs to the
polynomial fitting, while the nearest R2 and adjusted R2 indicators
to 1 pertain also to the polynomial fit. This means that the time
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Fig. 21. Curve fitting for the non parallel GA.

Table 3
Non parallel GA time curve fitting.

SSE R2 Adjusted R2 RMSE

Polynomial (Second grade) 2.329e+07 0.8469 0.8454 329.9
Exponential 3.531e+07 0.7679 0.7668 405.3

Table 4
Parallel GA time curve fitting.

SSE R2 Adjusted R2 RMSE

First grade polynomial 330 0.3328 0.3253 1.937
Second grade polynomial 342.7 0.3072 0.2913 1.985
Third grade polynomial 340.9 0.3108 0.2868 1.991

complexity worst case scenario for this particular GA is O(nn) but
probably is closer to O(n2).

As stated on Section 4.2, the simple algorithm is quite compu-
tationally expensive, hence the design of the PGA. The same time
complexity analysis through curve fitting was made for the PGA,
polynomial fitting results are shown in Fig. 22, from first to third
order polynomials. Fig. 22a depicts the first order polynomial,
f (x) = p1x + p2 with coefficients p1 = −0.0004414 and p2 =

122.1. Fig. 22b shows the second grade polynomial fitting, f (x) =

p1x2+p2x+p3 with coefficients p1 = 7.242e−05, p2 = −0.03153
and p3 = 125.1. Finally in Fig. 22c the third grade polynomial,
f (x) = p1x3 + p2x2 + p3x + p4 has coefficients p1 = 7.258e − 07,
p2 = −0.0004304, p3 = 0.07327, and p4 = 118.3.

Table 4 presents the goodness results. For this fitting the best
results, SSE and RMSE closer to 0, R2 and adjusted R2 closer to 1,
belongs to the first grade polynomial fitting. The second and third
grade fittings are acceptable, this means that the time complexity
worst case scenario for this PGA is O(n). This results confirm the
PGA’s performance upgrade.

6. Conclusions

Given the objective of this research presented in Section 3, the
proposed algorithm uses GA to achieve distance based formation,
with the implementation of two different types of chromosomes,
one for the distance solution, and the other for collision avoid-
ance. The algorithm is fast and precise when the number of robots
is low, but becomes impractical at higher number of robots. The
proposed solution for this is the use of the combined processing
power of all robots in a PGA that migrates possible solutions in
order to reduce processing time and achieve consensus between
the robots to a solution.

As expected simulations results show that the algorithm
works, finding solutions to obtain the distance based consensus,
while avoiding collisions. One disadvantage of the linear solutions
is that the collision avoidance velocity approach not always
works, but the flexibility of the distance based consensus allows
the algorithm to iterate until a valid solution is achieved.

Simulations with a higher number of robots show that the
simple GA becomes long, computationally expensive, and prone
not to find a valid solution. The parallel solution to this problem
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Fig. 22. Polynomial curve fitting for the PGA.

demonstrates DAI capable of agreeing on the final distance and
velocity solutions, reducing time and computational load.

Experiments show the implementation in real four wheeled
omnidirectional robots, demonstrating the practical use of the
algorithm to coordinate the movements of MRS.

This algorithm is important because with the growing im-
portance of MRS, finding new and alternative ways to achieve
consensus might bring diversity and flexibility in different kinds
of situations. The main contribution of this approach is the dis-
tributed intelligence point of view aiming towards collective in-
telligence, in which the robots are not being just coordinated
towards a position in plane, they rather agree on a solution using
cooperative schemes.

We are focusing our future research on the use of multiobjec-
tive evolutionary algorithms to optimize the algorithm. It was not
used in this paper because this algorithm is supposed to be a first
step on consensus non exact strategies. We are also interested in

adding complexity in geometrical shape and velocity curves to
the collision free trajectory, as stated in Section 5 the higher the
number of robots the harder it will be for the proposed algorithm
to find a solution.

The parallel scheme used in this work can be improved using
different communication topologies, diverse operators constants
and variations on the procedures for the mutation, crossover
and elitism. This changes could potentially improve the perfor-
mance. Additionally we expect to test the algorithms using a
distributed computing system or cluster of several computers or
microcomputers to better study this parallel algorithms.

The physical MRS platform performance requires much more
research than we were able to do in this paper. There is need
of a detailed analysis of the hardware implications in perfor-
mance of the distributed system. One mayor issue is Bluetooth
communication and asynchronous communication schemes. We
assume that optimizing Bluetooth communication or switching to
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a Wi-Fi scheme could increase speed. Particularly, we think that a
common genetic pool of solutions from which GAs take and pour
data asynchronously could serve to accelerate convergence and
reduce the data transmission load.

The use of more robots, and heterogeneous MRS is a future
research topic. The heterogeneity could be due to each robot’s
locomotion (aerial, terrestrial, legged or submarine), and it would
be particularly interesting, the diversity between the processing
capabilities of different robots.
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