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Abstract This paper extends the distance-based formation control for the case of holonomic
robots moving in 3D space. The approach is addressed for agents modeled as double-integrators
with any undirected communication graphs. The control strategy uses a combined distance-based
attractive-repulsive potentials to ensure convergence to the formation pattern avoiding possible
inter-robot collisions. In order to avoid unwanted formation patterns that verify the distance constraints,
each robot control law includes a volume condition which provides information about the unique
desired position of each robot in the formation pattern. The proposed algorithm is tested by numerical
simulations and extended to the case of quadcopters UAV’s by an input-output linearization showing
good behavior.
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1. INTRODUCTION

Distance-based formation control (DFC) is a fundamental issue
in the motion coordination of multi-robot systems (Oh et al.,
2015). The main challenge is to design decentralized control
strategies to move the robots to a desired formation pattern
defined by distance constraints, avoiding inter-robot collisions.
The control strategies encompass from reactive algorithms
based in natural-behaviors (Yu and LaValle, 2012) to the
use of communication graphs and distance-based functions
with attractive and repulsive behavior in Dimarogonas and
Johansson (2008).

The main drawback of the DFC with respect to the traditional
position-based formation control widely studied in (Ren and
Beard, 2008) and (Hernandez-Martinez and Aranda-Bricaire,
2011) falls in the generation of different final configurations of
robots that satisfy the distance constraints.Therefore, rigidity
problems arise (Krick et al., 2009). In this sense, a possible
solution to achieve an unique formation pattern is to construct
rigid patterns where at least (n−3) communication edges for n
robots must be defined as shown in (Olfati-Saber and Murray,
2002; Krick et al., 2008). Other approaches use additional
information in the formation setup, such as absolute angle
respect to a leader (Desai et al., 2001) or internal angles as
studied in a previous work in (Ferreira-Vazquez et al., 2015).
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Most of the DFC approaches have been addressed for the
case of single-integrators robots moving in the plane, like in
Dimarogonas and Johansson (2008) for the case of tree-shaped
formations, DFC with cycles in (Dimarogonas and Johansson,
2009) or specific leader-followers schemes focus in the
application to wheeled mobile robots in (Desai et al., 2001;
Toibero et al., 2008). Feedback linearization techniques have
been used when robot kinematics are more complex in (Liu and
Jiang, 2013). The convergence of formations with mismatched
distance constraints between agents is addressed in (Helmke
et al., 2014). The DFC applied to the case of double-integrators
is studied in Dimarogonas and Johansson (2008); Anderson
et al. (2012) for the leader-followers scheme and Oh and Ahn
(2014) for the case of undirected communication graphs using
a gradient-like control law.

The extension to the case of agents moving in 3D space
allows the application to formations of UAV’s. Position-based
formation control of quadcopters is studied in Alfriend et al.
(2010); Sumano et al. (2013) using a reduce model of
the position dynamics. Sliding mode control combined with
neural networks is proposed in Bo and Gao (2009). The
leader-follower scheme of distance and relative angle in UAV’s
is proposed in (Guangyan and Zheng, 2014) where an elastic
term is added providing a better control effect. Collision
avoidance of formation using Model Predictive Control (MPC)
in discrete-time is given in (Chao et al., 2011), where the
robots are formed with respect to a reference point. Finally, in
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1. INTRODUCTION

Distance-based formation control (DFC) is a fundamental issue
in the motion coordination of multi-robot systems (Oh et al.,
2015). The main challenge is to design decentralized control
strategies to move the robots to a desired formation pattern
defined by distance constraints, avoiding inter-robot collisions.
The control strategies encompass from reactive algorithms
based in natural-behaviors (Yu and LaValle, 2012) to the
use of communication graphs and distance-based functions
with attractive and repulsive behavior in Dimarogonas and
Johansson (2008).

The main drawback of the DFC with respect to the traditional
position-based formation control widely studied in (Ren and
Beard, 2008) and (Hernandez-Martinez and Aranda-Bricaire,
2011) falls in the generation of different final configurations of
robots that satisfy the distance constraints.Therefore, rigidity
problems arise (Krick et al., 2009). In this sense, a possible
solution to achieve an unique formation pattern is to construct
rigid patterns where at least (n−3) communication edges for n
robots must be defined as shown in (Olfati-Saber and Murray,
2002; Krick et al., 2008). Other approaches use additional
information in the formation setup, such as absolute angle
respect to a leader (Desai et al., 2001) or internal angles as
studied in a previous work in (Ferreira-Vazquez et al., 2015).
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Most of the DFC approaches have been addressed for the
case of single-integrators robots moving in the plane, like in
Dimarogonas and Johansson (2008) for the case of tree-shaped
formations, DFC with cycles in (Dimarogonas and Johansson,
2009) or specific leader-followers schemes focus in the
application to wheeled mobile robots in (Desai et al., 2001;
Toibero et al., 2008). Feedback linearization techniques have
been used when robot kinematics are more complex in (Liu and
Jiang, 2013). The convergence of formations with mismatched
distance constraints between agents is addressed in (Helmke
et al., 2014). The DFC applied to the case of double-integrators
is studied in Dimarogonas and Johansson (2008); Anderson
et al. (2012) for the leader-followers scheme and Oh and Ahn
(2014) for the case of undirected communication graphs using
a gradient-like control law.

The extension to the case of agents moving in 3D space
allows the application to formations of UAV’s. Position-based
formation control of quadcopters is studied in Alfriend et al.
(2010); Sumano et al. (2013) using a reduce model of
the position dynamics. Sliding mode control combined with
neural networks is proposed in Bo and Gao (2009). The
leader-follower scheme of distance and relative angle in UAV’s
is proposed in (Guangyan and Zheng, 2014) where an elastic
term is added providing a better control effect. Collision
avoidance of formation using Model Predictive Control (MPC)
in discrete-time is given in (Chao et al., 2011), where the
robots are formed with respect to a reference point. Finally, in
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(Nielsen and Sharma, 2015) a DFC scheme is designed using
the Lyapunov method, where the each robot keeps the leader
vehicle at a desired bearing angle in its field-of-view using
a video camera. In all the previous works, it is supposed an
inner control related to the orientation angles of UAV’s and
the reduction of the position dynamics as a unicycle-type robot
moving in a plane.

In this paper, we extend our previous work in (Ferreira-Vazquez
et al., 2015) for the case of 3D for spacial DFC and double
integrator models, different to the absolute position-based
formation in (Alfriend et al., 2010; Sumano et al., 2013). The
formation strategy is based on artificial potential functions
with attractive-repulsive behavior combined with information
about the position of each robot respect to other three robots
using a triple product. To the best of our knowledge, the
triple product artificial potential has not been used in other
works. The previous condition ensures the convergence to a
unique formation pattern. The approach is applied to the case
of quadcopter UAV’s formations using input-output feedback
linearization previously proposed in (Hernandez-Martinez
et al., 2015), avoiding a model reduction of the orientational or
translational dynamics as presented in (Guangyan and Zheng,
2014). Thus, the control approach becomes decentralized where
the UAV’s require to sense the displacement coordinates respect
to its adjacent members defined by any well-defined and rigid
undirected communication graph, becoming a more general
result than the leader-follower setups given in (Bo and Gao,
2009; Chao et al., 2011). Simulations for the case of four UAV’s
with a virtual reality environment show the feasibility of the
approach.

The paper is organized as follows. Section 2 formulates
the formation problem. In Section 3, the control strategy
is presented and the convergence is analyzed by Lyapunov
techniques. Section 4 extends the result to the case of
quadcopter UAV’s with numerical simulations. Finally, section
5 presents some conclusion remarks and future work.

2. PROBLEM DEFINITION

2.1 Modified distance-based Formation Problem

Let q = [q1, . . . ,qN ]
� ∈ R3×N be the position of the center of

N three-dimensional omnidirectional robots of diameter ρi with
the double integrator dynamics given by the following equation:

q̇i = pi,

ṗi = ui,
i = 1, . . . ,N (1)

Let ri j = q j −qi be the relative position vector of robot R j with
respect to robot Ri and

ri j = ‖ri j‖ (2)
be the Euclidean distance between robots Ri and R j. A distance
topology is defined by the sets Ni, i = 1, . . . ,N of robot indexes
j for which a desired distance di j between robots R j and Ri
is defined. It is assumed the topology is bidirectional, i.e. that
j ∈ Ni =⇒ i ∈ Nj.

For any 4-tuple (i, j,k,m) the 3-simplex oriented volume define
by robots Ri, R j, Rk and Rm (Boyd and Vandenberghe, 2004)
can be expressed by

αi jkm =
1
6

r�i j(rik × rim). (3)

Figure 1 shows a representation of αi jkm in space. This
volume provides relative angular information between robots

Ri R j

Rk

Rm

ri j

rik rim

Figure 1. The value of αi jkm is proportional to the tetrahedron
volume enclosed by the robots Ri, R j, Rk and Rm positions.
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Figure 2. Combined attractive-repulsive artificial potential field
as a function of r for the case where di j = 2 and ci j = 1.

in a configuration q. Let M be the set of all 4-tuples
(is, js,ks,ms),s = 1, . . . ,L, for which a desired simplex volume
α�

is jsksms
is defined. Taking into account the set M, a more

restricted distance-based problem may be formulated as the
following:
Problem Statement 1. Given N robots with dynamics defined
by (1), find a control law for ui,∀i such that the robots
converge without collisions to a configuration q verifying
distance constraints ri j = di j, ∀ j ∈ Ni and volume constraints
αi jkm = α�

i jkm, ∀(i, j,k,m) ∈ M.

A formulation to solve this problem is presented next.

3. FORMATION CONTROL

3.1 Combined attractive-repulsive artificial potential field

In order to converge to pre-specified inter-robot distances
without collisions, an attractive-repulsive artificial potential
field is used, given by the following definition.
Definition 1. Given any two robots Ri and R j an Artificial
Potential Field ϕi j is defined as:

ϕi j(ri j,di j,ci j) =
ri j −di j

di j − ci j
− log

(
ri j − ci j

di j − ci j

)
(4)

with ri j given by (2), di j their desired distance and

ci j =
1
2
(ρi +ρ j) (5)

their collision distance where ρk, k = 1, ...,N the robot
diameters and di j > ci j.

Figure 2 shows the shape of the combined potential field.
Observe also that ϕi j is well defined for ri j > ci j and tends to
+∞ when ri j → ci j with ri j > ci j.

3.2 Repulsive potential field

In a general formation specification there will be robots that do
not communicate with each other due to several reasons. For
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those cases, there should still exist a repulsive action to prevent
collisions. Therefore, a repulsive artificial potential field is
defined as follows.
Definition 2. Given two robots located at qi and q j with j /∈ Ni,
an Artificial Repulsive Potential Field χi j is defined as:

χi j =




0, ri j > Di j
ri j −Di j

Di j − ci j
− log

(
ri j − ci j

Di j − ci j

)
ri j < Di j

(6)

with ri j given by (2) , Di j the range of the repulsive potential
and ci j given by (5).

It is assumed that the range of the sensor is greater than the
collision distance, therefore Di j > ci j, ∀i, j and the potential χi j
is well defined.

3.3 Artificial volume potential field

The following potential field uses volume information given by
coefficients αi jkm to help drive the robots to a configuration q
with specific values of αi jkm, ∀(i jkm) ∈ M.
Definition 3. Given any four different robots Ri, R j, Rk and Rm
located at qi, q j, qk and qm respectively, an artificial volume
potential field ψi jkm is defined as:

ψi jkm(θ ,η) = κ(θα�
i jkm −ηαi jkm) (7)

with θ > 0, αi jkm is the 3-simplex volume defined in (3) and
α�

i jkm its desired value. The function κ : R → R satisfies the
following conditions:

(1) κ is differentiable with continuous first derivative in R.
(2) κ(x) = 0, ∀x ≤ 0.
(3) κ(x)> 0 and nondecreasing ∀x > 0.

3.4 Formation Control Strategy

This section states the main result, i.e. a control approach
that uses relative volume information between robots to
achieve a desired configuration satisfying distance and volume
constraints.
Theorem 1. Given N sphere-sized robots Ri, i = 1, . . . ,N with
positions and diameters given by qi and ρi respectively,
dynamics defined by (1), bidirectional distance topology
defined by the sets Ni and volume topology set M. For the case
of the Problem Statement 1, with a desired rigid configuration
specified by distances di j ∀ j ∈ Ni and compatible volume
constraints given by the set Γ� = {α�

i jkm, ∀(i, j,k,m) ∈ M}, the
following control law:

ui =−Kd∇iϕi −Kr∇iχi −Kv∇iψ�−Kppi (8)
ϕi = ∑

j∈Ni

ϕi j (9)

χi = ∑
j/∈Ni

χi j (10)

ψ� = ∑
i, j,k,m

(i, j,k,m)∈M

ψ�
i jkm (11)

ψ�
i jkm = ψi jkm(α�

i jkm,α
�
i jkm) (12)

with ϕi j the combined attractive-repulsive artificial potential
field defined by (4), χi j a repulsive artificial potential field to be
used between robots that are not communicated to each other
defined by (6), and ψi jkm the artificial volume potential field
defined by (7) and positive control parameters Kd , Kr, Kv and

Kp will drive the robots without collisions to a configuration
where all robots stop.

Proof. Let Φ� be the set of all robot configurations q� verifying
the distance and volume constraints. It is assumed that the
constraints are suitable such that Φ� �= ∅. Define a Lyapunov
function candidate VA(q) as,

VA(q) = λd

N

∑
i=1

ϕi +λr

N

∑
i=1

χi +λvψ�+
N

∑
i=1

p�
i pi, (13)

with λd , λr and λv positive constants to be defined later.
Since all artificial potential fields ϕi j, χi j and ψ� are positive
semidefinite functions by definition it follows that:

VA(q) = 0, ∀q ∈ Φ�

VA(q)> 0, ∀q /∈ Φ�

Evaluating the time derivative of VA along the trajectories of the
system (1),

V̇A(q) = λd ∑
i

ϕ̇i +λr ∑
i

χ̇i +λvψ̇�+∑
i

p�
i ṗi

= ∑
l

∑
i

∇�
l (λdϕi +λrχi)pl +∑

l
λv∇�

l ψ�+∑
i

p�
i ṗi

(14)
By substituting equations (9) and (11) into (14), the time
derivative of the Lyapunov function transforms into,

V̇A(q) = ∑
l,i

∇�
l

(
λd ∑

j∈Ni

ϕi j +λr ∑
j/∈Ni

χi j

)
pl

+λv ∑
l

∇�
l ψ�pl +∑

l
p�

l ul

(15)

Taking the gradients of the potential fields from equations
(4) and (6) and using their symmetric properties and
bidirectionality of the distance topology it follows that
(Ferreira-Vazquez et al., 2015)

V̇A(q) = 2∑
l

∇�
l (λdϕl +λrχl)pl

+λs ∑
l

∇�
l ψ�pl +λv ∑

l
p�

l ul
(16)

Substituting the control action (8) gives

V̇A(q) = ∑
l

∇�
l ((2λd −Kd)ϕl +(2λr −Kr)χl)pl

+(λv −Kv)∑
l

∇�
l ψ�pl −Kp ∑

l
p�

l pl
(17)

Choosing 2λd = Kd , 2λr = Kr and λv = Kv, equation (16)
becomes

V̇A(q) =−Kp ∑
l

p�
l pl ≤ 0 (18)

Using Lasalle’s invariant principle, the system will converge to
the largest invariant set M for which V̇A(q) = 0 =⇒ pi = 0, ∀i.
Applying Barbalat’s lemma implies ṗi = ui → 0 which gives
the conditions

pi = 0,
Kd∇iϕi −Kr∇iχi −Kv∇iψ� = 0,

∀i = 1, . . . ,N. (19)

Besides, assuming the robots are not colliding initially VA(q) is
bounded from above at t = 0 and will remain bounded for all
t > 0. Therefore, the robot trajectories do not collide.

It should be observed that equations (19) imply that all
robots stop. It is clear by definition that Φ� ⊆ M. Besides,
configurations that satisfy distance constraints di j but have
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opposite values of α�
i jkm which are generated by plane

symmetries, are not equilibrium states anymore. However, there
may still be unwanted local minima inside M. Nevertheless, by
using larger values of λv, i.e. larger values of Kv, the regions
of attraction of those local equilibrium states are being reduced
with respect to the desired final state.

From a practical implementation standpoint, taking the gradient
of the volume potential (7) gives

∇lψ�
i jkm =

dκ
dx

α�
i jkm

(
δlir jk × rkm +δl jrkm × rmi

+ δlkrmi × ri j +δlmri j × r jk
) (20)

with δab the Kronecker’s delta function. Each robot in the
4-tuple will implement one and only one of the terms on the
right hand side of (20) and they only need local information
of distances and angles to compute it. Besides, in the case of
a desired rigid configuration q�, only the signs of α�

i jkm are
needed in the proof to have convergence.

4. EXTENSION TO THE CASE OF QUADCOPTER UAV’S

In this Section, the DFC obtained for the general case of robots
moving in the space is extended to the case of Quadcopter
UAV’s formations. According to the Fig. 3 and recalling
our previous work given in (Hernandez-Martinez et al.,
2015), consider the coordinates of position ξ = [x,y,z]T and
orientation η = [φ ,θ ,ψ]T (roll, pitch and yaw, respectively)
of the body frame Γb respect to fixed frame Γe. Then, the
translational and rotational dynamical model of the quadcopter
UAV can be obtained as

mξ̈ = Re
b

[ 0
0
F

]
+

[ 0
0

−mg

]
(21)

J̃η̈ = τ −C(η , η̇)η̇ (22)
where m is the mass of the vehicle, g is the gravitational
constant, F is the main thrust force applied in the center of
mass, Re

b is the result of the multiplication of the three standard
rotations matrices, that results in

Re
b =

[ cψcθ −cθsψ sθ
cφsψ + cψsφsθ cφcψ − sφsψsθ −cθsφ
sφsψ − cφcψsθ cψsφ + cφsψsθ cφcθ

]
(23)

with cφ = cosφ , cθ = cosθ , cψ = cosψ and sφ = sinφ , sθ =

sinθ , sψ = sinψ . On the other hand, J̃ = JWn and C(η , η̇) =
JẆn is the Coriolis term with J the inertial symmetrical matrix
and

Wn =

[ 1 0 −sinθ
0 cosφ cosθ sinφ
0 −sinφ cosθ cosφ

]
(24)

and finally, τ = [τφ ,τθ ,τψ ]
T are the torques generated by the

rotors in Γb. According to the position and turning sense of the
rotors given in the Fig. 3, the F and τ control inputs are obtained
through

[
F
τ

]
=




1 1 1 1
−� � 0 0
1 0 −� �

−b
k

−b
k

b
k

b
k







f1
f2
f3
f4


 (25)

where � be the length of every arm of the quadcopter, b is the
drag constant and fi = kω2

i , i = 1, ...,4 are the indivual thrust

Figure 3. Quadcopter configuration scheme

forces of each rotor, where k is the thrust constant and ωi are
the angular velocities.

Substituting the rotational matrix Re
b given in (23) and defining

a control law τ = J̃τ̃ + C(η , η̇)η̇ , where τ̃ = [τ̃φ , τ̃θ , τ̃ψ ]
T

constitutes the vector of auxiliar torques, the dynamical system
(21-22) results in

mξ̈ =

[ F sinθ
−F cosθ sinφ

F cosθ cosφ −mg

]
(26)

η̈ = τ̃ (27)

According to (Hernandez-Martinez et al., 2015), the quadcopter
control can be decomposed in two hierarchical levels (posture
control and orientation control) assuming that the rotational
dynamics converges faster than the translational dynamics.
Thus, the translational dynamics (26), considering as control
inputs to F , θ and φ (note that ψ is not required), can be
input-output linearized by the control laws

θd = arctan
(

ux cosφ
uz +g

)
,

φd = arctan
(
−

uy

uz +g

)

F =
m(uz +g)
cosθ cosφ

(28)

where u = [ux,uy,uz]
T are the auxiliary translational control

inputs for the three axis. On the other hand, for the dynamics of
the orientation angles (27), the inner loop generates the desired
values of the orientation angles using the control laws

τ̃ = η̈d − γ2(η̇ − η̇d)− γ1(η −ηd) (29)

where γ1,γ2 > 0 are control parameters and ηd = [φd ,θd ,ψd ]
T ,

where ψd constitutes the (independent) function of the yaw
angle. Note that substituting (29) in (27), a linear equation of
the angle errors given by eη = η −ηd is obtained. Note that
an appropriate selection of control gains and initial conditions
can ensure small values of the orientation angles, avoiding the
indetermination of the control laws (28). It is important to
ensure a fast convergence of the orientation angles respect to
the translational coordinates.
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Finally, applying the control laws (28) and (29), the quadcopter
UAV is viewed in the translational dynamics as a double
integrator agent given by ξ̈ = u. If we consider a set of n
quadcopter UAV’s, then the dynamical systems can be written
as

ξ̈i = ui, i = 1, ...,n (30)
which falls in the case of omnidirectional agents addressed in
the previous case.

4.1 Numerical simulation of DFC of Quadcopter UAV’s

The results of a numerical simulation of the DFC applied
to a four quadcopter UAV’s are presented in Figures 4 to
8 with the following parameters. The initial position of the
coordinates ξi, i = 1, ...,4 of the robots are given by ξ1(0) =
[10,0,5]T , ξ2(0) = [−5,−10,3]T , ξ3(0) = [10,−5,10]T and
ξ4(0) = [10,−10,10]T . The desired distances between robots is
given by di j = 5 and the collision distance is given by ci j = 3.5,
∀i, j ∈ N, i �= j. For of each quadcopter mi = 1 kg; �i = 0.3 m;
bi = 0.001 m2kg; ki = 0.0005 kg m ∀i, i = 1,2,3,4. For the
volume constraints the value selected was α�

1234 =−1, α�
2341 =

1, α�
3412 = −1, α�

4123 = 1. There is complete communication
topology between all robots therefore the repulsive artificial
potential field of (6) is not necessary and Kr = 0. The value
for the gains associated with the consensus control law given
in Theorem 1 are Kd = 0.1, Kv = 0.2, Kp = 1. Note that the
robots converge to their desired inter-agents distances, as shown
in Figure 4 achieving a tetrahedron-shape formation. This is
shown in Figure 5, where distances ri j between robots Ri
and R j converge to 5 ∀i, j. Also, the volume constraints α�

i jkm
are satisfied. Figure 6 shows the control inputs generated by
the DFC law given by (8). With the control input (8) we can
produce the desired angles and main thrust forces for each
quadcopter UAV given by (28) also with the inner loop control
given by (29), with γ1 = 1.8598 and γ2 = 6.9177, and ψd = 0
we can compute the orientation angles for the quadcopters
and are shown in Figure 7 and Figure 8. Observe that the
orientation angles converge to their desired valued and also the
main thrust force converges to a constant value which indicates
that the quadcopters are in hoover mode preserving the desired
formation. In order to show the robustness of the approach,
a pulse perturbation is added in the control input U1 at the
time instant t = 150 with amplitude 0.01 and duration of 0.1
seconds. Also a band-limited white noise with a power noise
of 0.0001 is added to the quadcopter UAV 4 at t = 200. Note
that the performance of all signals is acceptable remaining in a
neighborhood of their desired values.

5. CONCLUSIONS

This work presents a formulation for a spatial distance based
formation control of groups of 3D double integrator agents
with any undirected communication graphs. The approach uses
a combined attractive-repulsive artificial potential field and
a novel control term related to a volume condition which
provides information about the unique desired position of
each robot in the formation pattern. This volume condition
constraints the position of a robot with respect to a virtual
plane described by three other robots. With this strategy it
is possible to avoid unwanted formation patterns that verify
the same distance restricitions. The control law is extended to
the case of nonholonomic robots such as quadcopters UAV.
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Figure 6. Control inputs of the formation strategy

Even though the quadcopter control law separates the control
objective in two different loops—translational and rotational
loops—the numerical simulation shows that the DFC achieves
its objective of convergence to a desired inter-robot distance. As
a future work the DFC control laws will be implemented with
a real setup of quadcopters and the possibility to extend the
strategy to solve the problem of flocking behavior. Also some
other communication topologies need to be investigated.
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Finally, applying the control laws (28) and (29), the quadcopter
UAV is viewed in the translational dynamics as a double
integrator agent given by ξ̈ = u. If we consider a set of n
quadcopter UAV’s, then the dynamical systems can be written
as

ξ̈i = ui, i = 1, ...,n (30)
which falls in the case of omnidirectional agents addressed in
the previous case.

4.1 Numerical simulation of DFC of Quadcopter UAV’s

The results of a numerical simulation of the DFC applied
to a four quadcopter UAV’s are presented in Figures 4 to
8 with the following parameters. The initial position of the
coordinates ξi, i = 1, ...,4 of the robots are given by ξ1(0) =
[10,0,5]T , ξ2(0) = [−5,−10,3]T , ξ3(0) = [10,−5,10]T and
ξ4(0) = [10,−10,10]T . The desired distances between robots is
given by di j = 5 and the collision distance is given by ci j = 3.5,
∀i, j ∈ N, i �= j. For of each quadcopter mi = 1 kg; �i = 0.3 m;
bi = 0.001 m2kg; ki = 0.0005 kg m ∀i, i = 1,2,3,4. For the
volume constraints the value selected was α�

1234 =−1, α�
2341 =

1, α�
3412 = −1, α�

4123 = 1. There is complete communication
topology between all robots therefore the repulsive artificial
potential field of (6) is not necessary and Kr = 0. The value
for the gains associated with the consensus control law given
in Theorem 1 are Kd = 0.1, Kv = 0.2, Kp = 1. Note that the
robots converge to their desired inter-agents distances, as shown
in Figure 4 achieving a tetrahedron-shape formation. This is
shown in Figure 5, where distances ri j between robots Ri
and R j converge to 5 ∀i, j. Also, the volume constraints α�

i jkm
are satisfied. Figure 6 shows the control inputs generated by
the DFC law given by (8). With the control input (8) we can
produce the desired angles and main thrust forces for each
quadcopter UAV given by (28) also with the inner loop control
given by (29), with γ1 = 1.8598 and γ2 = 6.9177, and ψd = 0
we can compute the orientation angles for the quadcopters
and are shown in Figure 7 and Figure 8. Observe that the
orientation angles converge to their desired valued and also the
main thrust force converges to a constant value which indicates
that the quadcopters are in hoover mode preserving the desired
formation. In order to show the robustness of the approach,
a pulse perturbation is added in the control input U1 at the
time instant t = 150 with amplitude 0.01 and duration of 0.1
seconds. Also a band-limited white noise with a power noise
of 0.0001 is added to the quadcopter UAV 4 at t = 200. Note
that the performance of all signals is acceptable remaining in a
neighborhood of their desired values.

5. CONCLUSIONS

This work presents a formulation for a spatial distance based
formation control of groups of 3D double integrator agents
with any undirected communication graphs. The approach uses
a combined attractive-repulsive artificial potential field and
a novel control term related to a volume condition which
provides information about the unique desired position of
each robot in the formation pattern. This volume condition
constraints the position of a robot with respect to a virtual
plane described by three other robots. With this strategy it
is possible to avoid unwanted formation patterns that verify
the same distance restricitions. The control law is extended to
the case of nonholonomic robots such as quadcopters UAV.
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Even though the quadcopter control law separates the control
objective in two different loops—translational and rotational
loops—the numerical simulation shows that the DFC achieves
its objective of convergence to a desired inter-robot distance. As
a future work the DFC control laws will be implemented with
a real setup of quadcopters and the possibility to extend the
strategy to solve the problem of flocking behavior. Also some
other communication topologies need to be investigated.
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