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Abstract: Recently, distance based formation of groups of mobile robots is attracting
researchers to provide a better format for decentralized control strategies. However, the setup
formulation introduces rigidity problems and additional undesired local minima in the formation
convergence standard algorithms. This paper explores the use of combined distance-based
attractive-repulsive potentials to simplify the navigation problem as well as the use of angular
information between robots to avoid unwanted formation patterns that verify the distance
constraints. The proposed algorithms are analyzed for the case of omnidirectional robots in
a two-dimensional environment and tested by numerical simulations showing a sliding mode
behavior to reach the intended formation configuration.
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1. INTRODUCTION

The study of behaviors between groups of mobile agents
has been the subject of investigation since many years now.
It has a scope and complexity that generates interesting
problems from an academic point of view but also helps
in the solution of real problems in many areas, from
navigation systems to safety and security applications [Cao
et al., 1997].
Behaviors, seeing as the interactions between robots and
their environment, include not only motion coordination
but also material handling, task decomposition and
resource allocation, etc. [Arkin, 1998].
In the case of motion coordination for a group of robots
the desired pattern or space distribution of the robots in
their environment is usually called a formation. Formation
control is referred to as finding a motion strategy that leads
to convergence to a desired formation whereas the group
trajectory is addressed as formation tracking, flocking
behavior or marching control [Ren and Beard, 2008].
Behavior based control uses biological inspired mechanisms
to design motion laws that achieve the desired goals
[Balch and Arkin, 1998]. Other strategies are based on
the use of graph theory to define a formation and study
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its main characteristics. Using this approach it is possible
to specify which robots interact with each other through a
communication graph. Global convergence can be analyzed
using the properties of the Laplacian matrix of the
communication graph between robots in the formation
[Desai, 2002]. Decentralized algorithms have been designed
to solve the problem of partial information at the robot
level [Muhammad and Egerstedt, 2004].
Another powerful technique to design control laws comes
from the use of artificial vector fields where formation
control and collision avoidance can be integrated in
one framework and convergence shown by the use of
Lyapunov theory [Dimarogonas and Kyriakopoulos, 2006],
[Hernández-Martínez and Aranda-Bricaire, 2011]. Feedback
Linearization techniques have been used when robot
kinematics are more complex [Liu and Jiang, 2013].
The standard formation defines the positions between
robots as vectors. Distance based formation control deals
with formations where only the scalar distance between
robots is specified. The latter are more flexible but,
that feature may represent an advantage or disadvantage
depending on the application domain. In both cases
rigidity problems arise [Krick et al., 2009]. Convergence
of distance based formations has been reported in many
works recently. For example, convergence is shown in
[Dimarogonas and Johansson, 2008] for the case where the
formation graph is a tree and therefore non rigid. Graphs
associated to rigid formations have cycles in them which
introduce convergence problems in the formation as can
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be seen in [Dimarogonas and Johansson, 2009]. Adaptive
control has also been used in the case of robot parametric
uncertainties [Cai and de Queiroz, 2014].
In this work a modified distance based formation control
problem is presented that restrict the formation configuration
domain using angular information between robots. In this
way a new control strategy, based on artificial potential
fields is developed improving convergence characteristics
over the standard algorithms. Simulations for the case
of three omnidirectional robots show the feasibility of
the approach. The paper is organized as follows. Section
2 formulates the modified problem to be solved and
defines the potential fields used. In Section 3, the
formation control laws are established for the cases under
consideration. Section 4 includes simulation results of the
control laws designed. Finally, section 5 presents some
conclusion remarks and future work.

2. PROBLEM DEFINITION

2.1 Distance-based Formation Problem

Let q = [qt
1, . . . ,qt

N]t ∈R2N be the position of the center of
N two-dimensional omnidirectional robots of diameter ρi

with the simple integrator dynamics given by the following
equation:

q̇i = ui, i= 1, . . . ,N (1)
Let rij = qj−qi be the relative position vector of robot j
with respect to robot i and rij = ‖rij‖ be the Euclidean
distance between robots i and j.
The distance-based formation problem can be stated as:
Definition 1. Given N omnidirectional robots defined by
(1), find a control law for ui,∀i such that rij(t) tends to
prespecified desired distances dij .

Not all distances may be prespecified leading to more
flexible configurations, invariant against rotations and
symmetries on the plane. Even non rigid configurations
are possible if not enough distances dij are set.
Let Ni, i = 1, . . . ,N be the set of robot indexes for which
dij is given and let Φ be the set of all robot configurations
satisfying the distance constraints. It is assumed that dij =
dji are both specified. Furthermore, for each configuration
φn ∈ Φ there is a set

Γn =
{
αn

ijk = r̂n
ij ·rn

ik,∀i, j,k | j,k ∈Ni

}
(2)

where αn
ijk are the angles between rn

ij and rn
ik. Figure 1

shows the relationship between the vectors rij , rik and
the angle αijk defined above. Γn uniquely defines a subset
of configurations of Φ that are invariant under group
translations and rotations.
It should be noted that if enough dij ’s are specified to have
just rigid configurations in Φ, then only the signs of the
αn

ijk are needed to define Γn. The following relationships
are also satisfied:

αn
ijk =−αn

ikj ∀n,i,j,k (3)
π = αn

ijk +αn
jki +αn

kij ∀n,i,j,k (4)

Taking this into account a more restricted distance-based
problem may be formulated as the following:

rij

rik
αijk

Robot i

Robot j

Robot k rjk

αjki
αkij

Fig. 1. Relationship between the relative position vectors
rij, rik and the angle αijk.

Definition 2. Given N omnidirectional robots defined by
(1), find a control law for ui,∀i such that the configuration
of the robots tend to a subset of Φ with a given and suitable
Γn.

In the following a formulation to attempt to solve this
problem is presented.

2.2 Combined attractive-repulsive artificial potential field

Artificial potential fields have been used for some time to
help in the navigation problem. Most works usually use
an attractive potential field to direct the robot to its goal
and repulsive fields to avoid obstacles. When both fields
depend only on the distances between robots a combined
version may also be used [Ogren et al., 2004] [Dimarogonas
and Johansson, 2009].
In this work the following logarithmic combined potential
field is used:
Definition 3. Given two robots qi and qj with j ∈Ni, an
Artificial Potential Field ϕij is defined as:

ϕij = rij−dij

dij−aij
− log

(
rij−aij

dij−aij

)
(5)

with rij = |rij| and aij = 1
2 (ρi +ρj).

Figure 2 shows the shape of the combined potential field.
Observed that ϕij is well defined for rij >aij and satisfies:

ϕij ≥ 0, ∀rij > aij

ϕij = ϕji, ∀i, j
ϕij = 0 ⇔ rij = dij

lim
rij→a+

ij

ϕij =∞
(6)

Using a gradient descent approach this potential function
would help to drive the distance between robots to
dij while avoiding contact between them. Besides, the
following identity holds.

∂ϕij

∂rij
= 1
dij−aij

− 1
rij−aij

(7)

3. FORMATION CONTROL

3.1 Distance based Formation control

The following control law has been proposed to solve the
problem stated in Definition 1,
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Fig. 2. Combined potential field as a function of r for the
case where dij = 2 and aij = 1.

ui =−kc
∂

∂qi
ϕi =−kc∇iϕi (8)

ϕi =
∑

j∈Ni

ϕij +
∑

j /∈Ni

γij

with ϕij given by equation (5) and γij given by a local
repulsive potential field such as Khatib’s [Khatib, 1986].
It has been shown that, by defining a Lyapunov function
V (q) given by,

V (q) =
∑

i

ϕi (9)

its time derivative becomes,

dV (q)
dt

=
N∑

i,j=1
∇jϕi · q̇j =− 2

kc

N∑
i=1
‖q̇i‖2 (10)

Using LaSalle’s Invariant Theorem the configuration of
robots is proven to converge to a state where all robots
stop. In general, this set equals Φ only when the graph
associated to the formation is a tree as shown by
[Dimarogonas and Johansson, 2008]. This result implies
that the final configuration may not be suitable for some
applications.
The following section introduces a control approach that
uses angular information from the robots to try to avoid
this problem.

3.2 Modified Formation Control with angular information
added

For the case of the problem stated in definition (2) the
following control law is proposed:

ui =−kc∇iϕi−ka∇iψ
n
i (11)

ϕi =
∑

j∈Ni

ϕij +
∑

j /∈Ni

γij (12)

ψn
i =

∑
j,k∈Ni

j 6=k

ψn
ijk (13)

ψn
ijk = αn

ijk(rij×rik ·k)Υ(αn
ijk(rij×rik ·k) +θ) (14)

with ϕij and γij the same as in equation (8),× refers to the
cross product while k is the normal to the two dimensional
space where the robots are in. The expression (rij×rik ·k)

refers to the standard scalar triple product. Υ(·) is the unit
step function and θ > 0 is a sufficiently small threshold to
be designed.
The term αn

ijk(rij × rik · k) + θ can also be thought of
as a restriction on the robot configurations. When they
are active a corrective action is applied to take the robot
formation to a location where the usual distance based
potential field will take the system to Φ.
A new Lyapunov function candidate Vn(q) is defined as,
Vn(q) =

∑
i

ϕi +λ
∑

i

ψn
i (15)

=
∑

i

∑
j,k∈Ni

j 6=k

( 1
2(gi−1) (ϕij +ϕik) +λψn

ijk) +
∑

i

∑
j /∈Ni

γij

with λ > 0 and gi the number of robots in Ni. For θ = 0 it
is clear that Vn(q) > 0 ∀(q) /∈ Φn. For θ > 0 each term in
the right hand side of equation (15) can be made positive
with a sufficiently small selection of θ as long as Φn does
not include a configuration with three robots in a line.
This proposition can be shown by noting that over the line
connecting robots j and k the functions ϕij and ψn

ijk are
continuous and also,

ψn
ijk = 0 (16)

min
qi|rij×rjk=0

(ϕij +ϕik)> 0 (17)

as long as dik 6= dij + djk. More specifically, after some
mathematical computations omitted here, and assuming
without loss of generality that rij < rik, it is possible to
see that

argmin
qi|rij×rjk=0

(ϕij +ϕik) = λjqj +λkqk (18)

with

λj = 1
2

(
1 + x

rjk

)
λk = 1

2

(
1− x

rjk

)
x = rd +

√
r2

d + r2
p

rd = (rij−d)(rik−d)
rij + rik−2d

d = 1
2 (ρj +ρk)

rp = rjk + 1
2 (ρk−ρj)

(19)

In the case when all dij are specified it is possible to show
that V̇ can be made negative semidefinitive.

V̇n(q) =
∑

i

ϕ̇i +λ
∑

i

ψ̇n
i

=
∑

i

∑
l

∇t
l (ϕi +λψn

i ) · q̇l (20)

=
∑

l

∑
i

∇t
l (ϕi +λψn

i ) · (−kc∇lϕl−ka∇lψ
n
l )

By substituting equations (12) and (13) into (20), the time
derivative of the Lyapunov function transforms into,
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V̇n(q) =
∑
l,i

∇t
l

∑
j 6=i

ϕij +λ
∑

j,k 6=i
j 6=k

ψn
ijk

 · q̇l (21)

=
∑
l,i,j

δ̄ij∇t
l

(
ϕij +λ

∑
k

δ̄jk δ̄kiψ
n
ijk

)
· q̇l (22)

where

δ̄ij =
{

0 i= j
1 otherwise

From equation (14) it can be shown that,

∇lψ
n
ijk =


αn

ijkk×rjk l = i

αn
ijkk×rki l = j

αn
ijkk×rij l = k

0 otherwise

(23)

Adding the symmetry properties of functions ϕij and ψn
ijk,

it follows that
V̇n(q) =

∑
lj

2δ̄lj∇t
lϕlj · q̇l+

+λ
∑
ljk

δ̄lj δ̄klδ̄jk (αn
ljk +αn

klj +αn
jkl)k×rjk · q̇l

=
∑

l

(
2∇t

lϕl +λπ∇t
lψ

n
l

)
· q̇l (24)

Choosing the control parameters such that λπkc = 2ka, it
becomes

V̇n(q) =−2kc

∑
l

‖∇lϕl + 1
2λπ∇lψ

n
l ‖2 (25)

It should be noted that equation (25) implies that there
are still unwanted local minima. However, by using larger
values of λ, i.e. larger values of ka the region of attraction
of those values are being reduced. Besides, if the values
of αn

ijk are substituted in (14) by their signs only, the
constant π is changed by a three in equations (24) and (25),
maintaining the end result. The effect of θ is to remove
the undesired configurations when robots are aligned.
The transition occurs when αn

ijkrij× rik ·k + θ = 0. This
equation describes a line s parallel to rjk and to a distance
given by

dist
(
s,rjk

)
= θ

rjk
(26)

for small values of θ.
To illustrate the behavior, when N = 3, and for sufficiently
large values of rij and rik, the proposed control law causes
robot i to slide along s, since the velocity vector field points
towards the opposite side as shown in figure 3.

4. SIMULATION RESULTS

To illustrate the proposed strategies, two simulations are
presented for the formation control of three robots. In this
case, a rigid formation implies all dij are given. The initial
condition for the robots is as follows, (x1,y1) = (−3,−3),
(x2,y2) = (3,−3), (x3,y3) = (0,3). The desired distances
are set to dij = 1. The control parameters are set to:
kc = 2,ka = 3,θ = 0.5.
In the first simulation α123 = α312 = −α213 = −1 to
disable the restrictions and check the standard strategy.

Fig. 3. Forces exerted over robot I when close to the sliding
surface, near and far of robots J and K.

Fig. 4. Trajectories showing convergence to a formation
with restrictions not active.

In this way Figure 4 shows a very smooth behavior,
converging to the desired formation. Figures 5 and 6 show
the control actions applied to all robots while figure 7
displays the profile of the Lyapunov function over the
selected trajectory.
In the second simulation the restrictions become active by
using α123 = α312 = −α213 = 1. Figure 8 shows an initial
period where robots 1 and 3 are exchanging positions to
deactivate the constraints. After that, a smaller sliding
region over s and finally the combined artificial potential
takes over to reach the desired configuration pattern.
Figure 9 shows the evolution of the distances between
robots. Figures 10 and 11 show the control actions applied
to all robots while figure 12 displays the profile of the
Lyapunov function over the trajectory performed by the
formation. Control actions are increased but the shape of
the Lyapunov function is still smooth.

5. CONCLUSIONS

This work presents a formulation for distance based
formation control of groups of omnidirectional robots
aiming at reducing undesired local minima. The approach
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Fig. 5. Control actions, i.e. robot velocities in x axis, for
all robots.

Fig. 6. Control actions, i.e. robot velocities in y axis, for
all robots.

Fig. 7. Lyapunov function over time.

Fig. 8. Trajectories showing convergence to a formation
with restrictions active.

Fig. 9. Time evolution of inter-robot error distances with
active restrictions.

uses a combined attractive-repulsive artificial potential
field and a control term related to the angular information
between robots. Lyapunov theory is used to show that the
robots will converge to the desired configuration enlarging
the region of attraction using suitable values for the
angular control term. It should be noted that the potential
field and angular control term used in this paper depend
on local information and are suitable for application in
decentralized algorithms. Simulations are presented for
the case of three robots showing the behavior of the
trajectories and control actions for the robots, as well as
the shape of the Lyapunov function when the constraints
are inactive and active. Extensions to prove the desired
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Fig. 10. Control actions, i.e. robot velocities in x axis, for
all robots.

Fig. 11. Control actions, i.e. robot velocities in y axis, for
all robots.

Fig. 12. Lyapunov function over time for simulation with
active restrictions.

behavior for partial communication between robots, as
well as introducing robot dynamics and marching control
are subject of ongoing research.
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