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Abstract

This paper analyses the formation tracking of groups of
mobile robots moving on the plane. A leader robot is chosen
to follow a prescribed trajectory whilst the rest, considered
as followers, are formed in an open-chain configuration.
Two formation-tracking control laws using approximate
velocities are proposed, in which some velocities must be
communicated between robots in order to ensure the
simultaneous preservation of the formation and the
following of the group path. The main result is analysis of
the convergence of the two proposed control laws. The
restriction of inaccurate information occurs in decentral‐
ized multi-robot platforms, in which the mobile agents are
only able to measure positions and the velocities’ functions
are estimated using online numerical methods. A numeri‐
cal simulation of both controllers in the case of omnidirec‐
tional robots is shown. For the case of the unicycle-type
robots, real-time experiments of both controllers were
implemented and tested.

Keywords Formation Control, Marching Control, Multi-
robot Systems, Autonomous Robots

1. Introduction

Recently, the motion coordination of multiple biological
entities has inspired the design and implementation of
natural behaviours in mobile robots for industrial and
service applications [1, 2]. Observations of ethologists have
determined that the ordered motion of ants, fishes or birds
is constructed from local interactions between mobile
agents. Each agent acts according to the local information
acquired from other members [3]. Therefore, the control
schemes are decentralized and the study falls within the
research areas of multi-agent systems, sensor networks and
distributed control systems. The decentralized schemes
also permit more autonomy for the robots, a smaller
computational load in control implementations and the
method’s applicability to large-scale groups [4].

A special case of motion coordination is formation tracking
[4, 5], also called marching control [6] or flocking behaviour
[7], in which a group of mobile robots achieves geometric
patterns whilst the whole group follows a prescribed
marching trajectory. Formation tracking appears in some
applications such as the transportation and manipulation
of large objects, search and rescue tasks and perimeter
detection, etc. In formation tracking, it is required that the
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group follows some trajectories in the workspace, while a
rigid formation pattern is preserved simultaneously. Thus,
the main challenge of formation tracking is the inter-robot
strategic sharing of information about the marching path
or the velocities of certain robots in the group, in order to
ensure the formation’s preservation, maintaining the
greatest possible level of decentralization.

The leader-follower schemes [8, 9] are frequently studied
by the academic community due to the inspiration that
biological behaviour creates (for instance, in ants). In these
schemes, a unique leader robot follows a marching path
while  the  rest,  termed  followers,  converge  to  some
formation pattern  with  respect  to  the  leader.  Although
some  contributions  have  been  proposed  in  relation  to
formation tracking, most of the studies consider that the
robots  can  measure  the  exact  information  about  the
velocities of the other robots or the marching path. For
instance, [10] studies the case of a convoy-like formation,
in  which  the  robots  are  initially  placed  at  the  desired
positions, and they know the linear and angular veloci‐
ties of the adjacent robot. The positions and orientations
of virtual leaders serve as reference points for the follow‐
er robots in [11, 12] and the exact marching path deriva‐
tive is available to all robots in [6, 5].

Note that in the natural leader-followers scheme, each
agent is able to sense the position of only the nearby agents,
and the velocities must be estimated or intuited by their
local controllers. As will be discussed below, if some
velocities are not approximated in the control laws, then
the formation is not rigid during the path following, as
shown in [13, 14], in which the positions of the followers
vary in a ball that is centred in terms of the leader’s
reference frame. Some papers estimated the leader’s
velocity using position measurements acquired through
observers [15] or local sensors [16]. The problem of forma‐
tion tracking is studied via an estimator designed to track
a globally desired velocity that is available to a subset of
robots via a consensus-based velocity term in [17]. Predic‐
tive control is applied in [18], which added a term to the
cost function of the leader in order to preserve the forma‐
tion. Other works focus on the reconstruction of the
marching path using adaptive algorithms in [19, 20, 21, 22],
and Lyapunov techniques in [23]. The velocities of neigh‐
bours are estimated in [24, 25] in order to construct the
desired marching path based on local information. Recent‐
ly, the approximation of velocities for the case of spacecraft
formations was obtained by using a non-linear filter with
finite-time convergence in [26]. Most previous works
designed estimation methods for the velocity of the agents
based on the measurement of the marching path’s exact
velocity, decreasing decentralization and simplicity of the
control laws. Commonly, some numerical methods are
included in order to estimate velocities in the experimental
platforms of multi-robot systems. However, the effects of
these approximations have not been formally analysed.

In [27], two formation-tracking control laws were designed
using exact velocity measurements in order to achieve

formation-tracking convergence. This paper shows the
boundedness of the formation-tracking error when only
position information is used. The variation of the forma‐
tion-tracking error can be made arbitrarily small when the
approximations of velocities are close to the real values. In
addition, for a class of tracking trajectory, we show the
exponential convergence of the formation-tracking error.
This study is important, since this is the way that such
implementation is usually done. Nevertheless, the degra‐
dation of the performance on the overall system has not
been formally studied. To show the effects of the approxi‐
mate velocities, the control laws were extended to unicycle-
type robots in real-time experiments.

The rest of the paper is organized as follows. Section 2
introduces the kinematic model and the problem state‐
ment. A short summary of our previous formation-tracking
control strategy, with its exact velocities, is presented in
Section 3 with numerical simulations. The main result of
the paper is given in Section 4, using approximate velocities
with numerical simulations. The extension of the model to
unicycle-type robots and the real-time experiments are
shown in Sections 5 and 6, respectively. Finally, some
concluding remarks are presented in Section 7.

2. Problem Definition

Denote by N ={R1,...,Rn}, a set of n point robots moving in
the space with positions zi(t)= xi(t),yi(t) T , i =1,...,n. The
kinematic model of each agent or robot Ri is described by

= , = 1,..., ,i iz u i n& (1)

where ui∈ℜ2 is the velocity along the X  and Y  axes of the
i -th robot. Let R1,...,Rn−1 be the follower robots, and Rn be
the leader robot. Based on the leader-follower scheme,
define zi

* as the desired relative position of Ri in a particular
formation, given by

1 ( 1) , 1,..., 1,

( ),
i i i i

n

z z c i n

z m t

*
+ +

*

= + = -

=
(2)

where c(i+1)i∈ℜ2, i =1,...,n −1 denotes the vector that repre‐
sents the desired relative position of Ri with respect to Ri+1

and m(t)= mx(t),my(t) ∈ℜ2 is the marching path (a twice-
differentiable function) of the leader.

Remark 1 Note that the variables zi, i = 1,...,n are the absolute
position vectors of the robots with respect to the global reference
frame. Therefore, the variables zi

∗, i = 1,...,n given in (2) are also
absolute coordinates. However, in the context of formation
control, zi

∗, i = 1,...,n are called desired relative positions in the
sense that they depend on the positions of other robots. Therefore,
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the word relative does not indicate that zi
∗, i = 1,...,n are measured

with respect to a different reference frame.

Figure 1 shows an example of formation tracking in which
the robots satisfy a specific formation pattern while
simultaneously following the trajectory m(t). The goal of
the leader is to follow the marching path, whereas the goal
of the followers is to maintain a desired pattern formation
with respect to the leader, using the position of the adjacent
robot as a guide. This strategy is usually considered as an
open-chain or convoy configuration [10]. Note that the
marching path could be constructed online by a human
operator, who controls the displacement of the leader
remotely while the followers achieve a formation.

and angular velocities of the next robot. The position and
orientation of some virtual leaders serve as the reference of
the follower robots in [11, 12] and the exact marching path
derivative is included to all robots in [5, 6].

Note that in the natural leader-followers scheme, each
agent is able to sense the position of the near-by agents
only, and the velocities must be estimated or intuited in
their local controllers. As will be discussed below, if
some velocities are not approximated in the control laws,
the formation is not rigid during the path following, as
shown in [13, 14], where the positions of the followers
vary in a ball centered at the leader reference frame.
Some papers estimate the leader velocity using position
measurements through observers [15] or local sensors
[16]. The problem of formation tracking is studied via
an estimator designed to track a global desired velocity
available for a subset of robots by a consensus-based
velocity term in [17]. Predictive control is applied in [18]
adding a term to the cost function of the leader to preserve
the formation. Other works focus on the reconstruction
of the marching path using adaptive algorithms in [19–
22], and Lyapunov techniques in [23]. The velocities of
neighbors are estimated in [24, 25] to construct the desired
marching path based on local information. Recently,
the approximation of velocities for the case of spacecraft
formations is obtained by a nonlinear filter with finite-time
convergence in [26]. Most previous works design
estimation methods for the velocity of the agents based
on the measurement of the exact velocity of the marching
path, decreasing decentralization and simplicity of the
control laws. Commonly, some numerical methods are
included to estimate velocities in experimental platforms
of multi-robot systems. However the effects of these
approximations are not formally analyzed.

Based on [27], where two formation tracking control
laws were designed using exact velocity measurements to
achieve formation tracking convergence. In this paper it
is shown the boundedness of the formation tracking error
when only position information is used. The variation
of the formation tracking error can be made arbitrarily
small when the approximation of velocities is close to the
real values. Also, for a class of tracking trajectory we
show exponential convergence for the formation tracking
error. This study is important since this is the way the
implementation is usually done. Nevertheless the analysis
of the degradation of the performance on the overall
system is not formally studied. To show the effects of the
approximate velocities, the control laws are extended to
unicycle-type robots with real-time experiments.

The rest of the paper is organized as follows. Section 2
introduces the kinematic model and the problem
statement. A short summary of our previous formation
tracking control strategy with exact velocities is presented
in Section 3 with numerical simulations. The main result
of the paper is given in the section 4 using approximate
velocities with numerical simulations. The extension to
unicycle-type robots and the real-time experiments are
shown in Sections 5 and 6, respectively. Finally, some
concluding remarks are presented in Section 7.

2. Problem Definition

Denote by N = {R1, ..., Rn}, a set of n point robots moving
in the space with positions zi(t) = [xi(t), yi(t)]

T , i =
1, ..., n. The kinematic model of each agent or robot Ri is
described by

żi = ui, i = 1, ..., n, (1)

where ui ∈ ℜ2 is the velocity along the X and Y axis
of the i-th robot. Let R1, ..., Rn−1 be the follower robots,
and Rn the leader robot. Based on the leader-follower
scheme, define z∗i as the desired relative position of Ri in a
particular formation, given by

z∗i = zi+1 + c(i+1)i, i = 1, ..., n − 1, (2)

z∗n = m(t),

where c(i+1)i ∈ ℜ2, i = 1, ..., n− 1 denotes the vector which
represents the desired relative position of Ri with respect
to Ri+1 and m(t) = [mx(t), my(t)] ∈ ℜ2 is the marching
path (a twice differentiable function) for the leader.

Remark 1. Note that the variables zi, i = 1, ..., n are the
absolute position vectors of the robots with respect to the global
reference frame. Therefore, the variables z∗i , i = 1, ..., n given
in (2) are also absolute coordinates. However, in the context of
formation control, z∗i , i = 1, ..., n are called desired relative
position in the sense that they depend on the position of other
robots. Therefore, the word relative does not allude that z∗i ,
i = 1, ..., n are measured with respect to a different reference
frame.

Figure 1 shows an example of the formation tracking
where the robots satisfy a specific formation pattern while
they follow a trajectory m(t) at the same time. The goal
of the leader is to follow the marching path whereas the
goal of the followers is to maintain a desired pattern
formation with respect to the leader using the position of
the next robot. This strategy is usually considered as an
open-chain or convoy configuration [10]. Note that the
marching path could be constructed online by the action of
a human operator controlling remotely the displacement
of the leader while the followers reach a formation.

Figure 1. Desired formation tracking of the robots.

Problem Statement. The goal of formation tracking is to
design a control law ui = fi(zi, z∗i ) for every robot Ri, such
that limt→∞(zi − z∗i ) = 0, i = 1, ..., n .
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Figure 1. Desired formation tracking of the robots

Problem Statement. The goal of formation tracking is to
design a control law ui = f i(zi,zi

∗) for every robot Ri, such
that limt→∞(zi − zi

*)=0, i =1,...,n.

3. Control strategy based on the exact information of
velocities

Based on [27], for every follower robot, Local Potential
Functions (LPFs) are defined by

2= , = 1,..., 1i i iz z i ng *- -P P (3)

Note that γi is always positive and reaches its minimum
only when zi = zi

∗. The standard approach of (attractive)
LPFs consists in applying the partial derivative of an LPF
with respect to zi, as control inputs of every robot Ri. Thus,
the control inputs steer every robot to achieve the minimum
of this potential function, which is designed according to
the specific position vectors that construct a particular
formation. Using these functions, two control laws can be
defined by
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= ( ) ( )
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u k m t i n
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u m t k z m t
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- + -ï ¶G í

ï - -î

&

&
(4)

( )
1

2

1= , = 1,..., 1
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u m t k z m t

g
+

ì ¶
- + -ï ¶G í

ï - -î

&

&
(5)

where k ,km >0. Note that the control law Γ1 requires the
provision of feedback ṁ(t) to all followers, and that Γ2

includes the feedback of the adjacent robot ż i+1 for all
followers. Thus, the first n −1 robots are not required to
process complete information about m(t) or the positions of
all robots, unlike in [4] or [28], in which all robots must
know the target position or trajectory, and more than one
desired distance between robots. A schematic description
of the control strategies is shown in Fig. 3. Observe that the
control law of the leader requires the exact derivative of
m(t) to function, whilst the followers require the full
knowledge of ṁ(t) or ż i+1.

With respect to the convergence of the desired formation
tracking using (4) or (5), the next proposition can be found
in [27].

Proposition 1 Consider the system (1) and the control laws (4)
or (5) for n robots. Then, in the closed-loop systems (1), (4) and
(1), (5), the first n − 1 robots converge to the desired formation,
i.e., limt→∞(zi − zi

*) = 0, i = 1,...,n − 1, whereas Rn converges to the
marching path, i.e., limt→∞(zn(t) −m(t)) = 0.

A sketch of the proof is included for completeness.

Proof. The dynamics of zi in the closed-loop systems (1), (4)
and (1), (5) are given, respectively, by

( )

( )

1 ( 1)= ( ),

(1),(14) : = 1,..., 1
= ( ) ( )

i i i i i

n m n

z k z z c m t

i n
z m t k z m t

+ +
ì - - - +
ïï -í
ï - -ïî

& &

& &
(6)

( )

( )

1 ( 1) 1= ,

(141),(1415) : = 1,..., 1
= ( ) ( )

i i i i i i

n m n

z k z z c z

i n
z m t k z m t

+ + +
ì - - - +
ïï -í
ï - -ïî

& &

& &
(7)

Define the error variables by

= , = 1,...,i i ie z z i n*- (8)

where e1,...,en−1 are the formation errors of the followers and
en is the path-following error of the leader. The dynamics
of the error coordinates (8) for the two control laws are
given respectively by

( )1 2=e B I eÄ& (9)

( )2 2=e B I eÄ& (10)

3Eduardo Gamaliel Hernandez-Martinez, Jose-Job Flores-Godoy, Guillermo Fernandez-Anaya and Alexandro Lopez-Gonzalez:
Formation Tracking Based on Approximate Velocities



where ⊗  denotes the Kronecker product (the Kronecker
product allows use of a more compact notation for the
equations), I2 is the 2×2 identity matrix and the matrices B1

and B2 are

1
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0 0 0 0
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0 0 0 0
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Clearly, the matrices B1 and B2 are Hurwitz ones, and the
errors converge to zero. This means that the n −1 first agents
converge to the desired formation, whereas Rn converges
to the marching path. □

Remark 2 It is necessary to add ṁ(t) in Γ1 and ż i+1 in Γ2 in order
to guarantee the preservation of the formation during the
trajectory tracking. If they are not included, the errors’ time
derivatives become ė = (B1⊗ I2)e + Sx,Sy

T  or
ė = (B2⊗ I2)e + Sx,Sy

T , with Sx = 0,...,0,ṁx(t),0 T  and
Sy = 0,...,0,ṁ y(t),0 T . Even though the matrices B1 and B2 are
clearly Hurwitz ones, the dynamics of Rn−1 is disturbed by the
marching velocity and it is transmitted to the other followers.

This is an example of disturbance propagation in chain-stability
in formation control using the leader-followers’ scheme [9], in
which the motion of the leader influences the formation stability
of the followers.

The control strategies (4) and (5) are appropriated for any
kind of sufficiently smooth function m(t). Figure 3 shows a
numerical simulation of both control laws with n =3, k =1
and km =1. The initial conditions are given by z1(0)= −1,3 ,
z2(0)= 2,2  and z3(0)= 2,5 . The desired formation is a
triangle defined by the vectors c21 = 0,−4  and c32 = −3,2 ,
and the marching path is a circular path given by
m(t)= 3 + cos(0.2t),3 + sin(0.2t) . Note that the follower
robots converge to the desired formation and that the
leader robot, z3 (represented by a green dashed line),
converges to the marching path m(t). This is shown through
the convergence of the error variables. However, the two
control laws present differences in the transitory regime.

The convergence of the errors is reached due to the strong
assumption that both the velocities of the robots and the
marching path are measured exactly. The requirements of
the local controllers that the robots include these velocities
can be translated into a greater overhead on the communi‐
cation between the mobile agents. This is the reason
motivating analysis of the impact of the velocities’ approx‐
imation, which is addressed in the next section.

4. Control strategy using the approximations of velocities

Recalling the inspiration derived from nature, in which the
mobile agents are capable of sensing only the position of
the robots and the marching path, the two control schemes
are now modified according to Fig. 4. The robots are not
equipped with velocity sensors, and the control laws given

Figure 2. Formation-tracking scheme with the exact information about the velocities of robots and the trajectory
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by the equations (4) and (5) must be modified in order to
incorporate some approximation method for estimating
these velocities. The impact of these inexact data on the
convergence analysis needs to be studied; hence, a model‐
led description of the approximation of the derivatives in
the system’s dynamics is included.

Note that the leader robot needs to approximate the
derivative of m(t) and that the follower robots also need to
approximate the velocity of the marching path (Figure 4
(a)) or the adjacent robot (Figure 4 (b)). In actual imple‐
mentations, the velocities are calculated by the local
controllers using numerical methods, performing a more

Figure 3. Formation-tracking scheme with the exact information of velocities
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realistic and decentralized scheme. The derivative approx‐
imation function shown in Fig. 4 is defined in the frequency
domain as

( ) =
1

sg s
st +

(11)

where τ∈ℜ and τ ≥0. Thus, the approximation of velocity
for a robot Ri and the trajectory m(t) is established by

( ) ( )
( ) ( )
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= ( )

i i

m

s g s z s i n
s g s m s
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Substituting (11) in (12), we obtain
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By defining the auxiliary variables
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it is possible to obtain from (14)
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Therefore, by substituting (14) in (13), and using the inverse
Laplace transform on (13) and (15), we can obtain the
following differential equations
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Considering the dynamics of the approximate velocities,
the control laws Γ1 and Γ2 are modified as
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The closed-loop systems (1), (17) and (1), (18) result in the
extended system’s equations
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and, when written in matrix form, the closed-loop systems
are given, respectively, by
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It is clear that, due to inexact information regarding the
velocities, the errors converge to a residual set around zero,
which depends on the quality of the approximate velocities.
Similar to the previous case, it is necessary to analyse the
convergence of the robots to the formation tracking. Thus,
we define the following auxiliary variables

= , = 1,...,i i ie z z i n*-

1= , = 2,..., 1i i i i nd j j +- -

( )=n n m td j j-

1 = ( )n m m td j+ - &

where the errors ei are similar to (8) and the δi errors are the
difference between the approximate velocities of the robots
and the marching path. Note that if the errors ei converge
to zero, the robots achieve the desired formation and the
convergence of δi ensures that the robots move at the same
velocity as that of the marching path, i.e., preserving the
formation pattern.

The next proposition is our main result, which establishes
the boundedness of the errors around zero, based on small
values of τ and the behaviour of the acceleration of the
marching path.

Proposition 2 Consider the system (1) and the control laws (17)
or (18) for n robots. Suppose that k,km > 0. Then, in the closed-
loop systems (1), (17) and (1), (18), the error coordinates are
bounded for any τ ≥ 0 and | m̈(t) | <∞. Furthermore, if m̈(t) = 0,
then the errors tend exponentially towards zero, regardless of the
value of τ, and when | m̈(t) | <∞ and τ → 0, the errors also
converge to zero as t →∞.

Proof. For the closed-loop system (1), (17), the dynamics of
the error coordinates is given by

( )

1

1 1

1

1 1

= , = 1,..., 2
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=
1=

i i i
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n n

e ke ke i n
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d
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(23)
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and written in matrix form as
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where e = e1,...,en
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By using mathematical induction, it can be shown that the
characteristic polynomial of matrix Λ̃ is given by

pΛ̃(λ)= (λ + k )2(n−1)(λ + km)2 + (λ +
1
τ )

2
 ; therefore we conclude

that (24) is bounded-input, bounded-state stable.

On the other hand, for the closed-loop system (1), (18), the
dynamics of the errors is given by
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and written in matrix form as
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where e = e1,...,en
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Figure 4. Formation-tracking scheme, with approximate information about the velocities of robots and the trajectory
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Now, the characteristic polynomial of matrix �̃ is given by
p�̃(λ)= (λ + 1)2n(λ + k)2(n−1)(λ + km)2 ; therefore we also con‐
clude that (26) is bounded-input, bounded-state stable. In
this case, observe that the eigenvalues do not depend on
the value of τ.

Note that if m̈(t)=0, then we have a homogeneous, linear
system in both cases; therefore, the solution converges
exponentially to zero. Finally, the solution of the coordinate
δn+1, as t →∞, is bounded by

1 ( )n m td t+ £ && (27)

from which we can see that |δn+1 | →0 as τ →0. □

Figure 5 shows a numerical simulation of the closed-loop
systems (1), (17) and (1), (18), with τ =0.5, and the same
parameters and initial conditions as in Fig. 2. The error
coordinates do not converge to zero, but remain bounded
around zero. The transitory regime is more evident than in
the case of exact information.

Analysing the effects of the gain parameter τ, define the
error performance index in both cases as

ẽ =
1
tf
∫0

tf ( ∥ e1∥
2 + ∥ e2∥

2 + ∥ e3∥
2 )dt and δ̃ =

1
tf
∫0

tf ( ∥δ4∥
2 )dt ,

for the control law Γ̄1 and

δ̃ =
1
tf
∫0

tf ( ∥δ2∥
2 + ∥δ3∥

2 + ∥δ4∥
2 )dt  for the control law Γ̄2.

Table 1 shows the results for two values of τ in the previous
simulation at the final time tf =40. Observe the best results
for the smaller values of τ, and the very similar perform‐
ance of the two control laws.

Γ̄2 τ

ẽ δ̃ ẽ δ̃ τ

0.5 0.32 0.38 0.31 0.32

0.005 0.28 0.12 0.25 0.1

Table 1. Error-performance index with different values of Γ̄1

5. Extension of the control laws to the case of unicycle-
type robots

The control laws (17) and (18) can be extended to the case
of nonholonomic mobile robots. Consider the kinematic
model of unicycle-type robots, as shown in Figure 6, given
by

cos 0
= sin 0 , = 1,..., ,

0 1

i i
i

i i
i

i

x
v

y i n
w

q
q

q

é ù é ù
é ùê ú ê ú
ê úê ú ê ú
ë ûê ú ê úë û ë û

&
&
&

(28)

where vi and wi are the linear and angular velocities,
respectively, of the midpoint of the wheel’s axis given by
(x,y). It is known that the dynamical system (28) cannot be
stabilized by application of a continuous time-invariant
control law [29]. Because of this restriction, the selection of
the coordinates αi =(pi,qi), as shown in Figure 6, as a control
output instead of (x,y) helps to simplify the analysis,
avoiding singularities in the control law. Moreover, the
position of the αi could be the position of an actuator or the
robot’s center of mass. The coordinates αi are given by

cos
= = , = 1,..., ,

sin
i i i

i
i i i

p x l
i n

q y l
q

a
q

é ù é ù+
ê ú ê ú+ë û ë û

(29)

and their dynamics can be obtained as

( )

cos sin
= , = 1,..., ,

sin cos
i i i

i
i i i

Ai i

l v
i n

l w
q

q q
a

q q
é ù é ù-
ê ú ê ú
ë û ë û1444442444443

&
(30)

where Ai(θi) is the so-called decoupling matrix of the robot
Ri. Note that det(Ai(θi))= l ≠0. Therefore, it is possible to
design a control strategy in order to move αi to a desired
location using the control law vi,wi

T = Ai
−1(θi) f i,i =1,...,n,

where functions f i are the desired dynamics of the coordi‐
nates αi.

Thus, extending the previous results to the case of point
robots, the control laws with exact velocities given in (4)-
(5), or the control laws with approximate velocities ex‐
pressed in (17)-(18), could be rewritten for unicycle robots
by

11= ( )( ), = 1,...
2

i
i i i

i

v
A u i n

w
q-é ù

ê ú
ë û

(31)

where ū i are identical functions of the control laws ui as
defined in (4)-(5) and (17)-(18), depending on the coordi‐
nates αi. Note that the dynamics of the coordinates αi in the
closed-loop system (29)-(31) are reduced to αi = ū i, i =1,...,n.
Therefore, the analysis of the formation tracking becomes
in the case of holonomic robots studied in Sections 3 and 4.
Note that these input-output linearizations leave the
orientation angles θi in an uncontrolled state.
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Figure 5. IRobot Create
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(a) Control law Γ̄1 with τ = 0.5
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(b) Control law Γ̄2 with τ = 0.5

Figure 5. Simulation of formation tracking using approximate

velocities

and their dynamics can be obtained as

α̇i =

[
cos θi −l sin θi

sin θi l cos θi

]

︸ ︷︷ ︸

Ai(θi)

[
vi

wi

]

, i = 1, ..., n, (30)

where Ai(θi) is the so-called decoupling matrix of the
robot Ri. Note that det(Ai(θi)) = l 6= 0. Then, it is possible
to design a control strategy to move αi to a desired location

using the control law [vi, wi]
T = A−1

i (θi) fi, i = 1, ..., n,
where fi is the desired dynamics of the coordinates αi.

Thus, extending the previous results for the case of point
robots, the control laws with exact velocities given in
(4)-(5), or the control laws with approximate velocities
expressed in (17)-(18), could be rewritten for unicycle
robots by

[
vi

wi

]

=
1

2
A−1

i (θi)(ūi), i = 1, ...n (31)

Figure 6. Kinematic model of unicycles

Figure 7. Irobot Create

where ūi are identical functions of the control laws ui

defined in (4)-(5) and (17)-(18), but depending on the
coordinates αi. Note that the dynamics of the coordinates
αi in the closed-loop system (29)-(31) is reduced to
αi = ūi, i = 1, ..., n. Therefore the analysis of
the formation tracking falls in the case of holonomic
robots studied in the Section 3 and 4. Note that these
input-output linearizations leave the orientation angles θi

uncontrollable.

6. Experimental work

The control strategies were implemented on an
experimental setup consisting of three unicycle-type
robots manufactured by IRobot® model Create, and a
vision system composed by a monochrome camera Genie
HM-1024 with ethernet communication, developed by
Teledyne Dalsa®. The camera captures the position of
two white circle marks placed on top of every robot, as
shown in the Fig. 7, pointing the coordinates (xi, yi) and
αi, respectively. The camera is installed at 2.5m height and
configured to work at 117 frames per second. Therefore,
the sampling period is given by 8 milliseconds and the
resolution of the camera is given by 1024 × 768 pixels
which produces a position resolution of 3mm2 per pixel.
Note that the workspace and the robots are covered in
black to highlight the white markings.

Using the white marks, the position and orientation of
every robot is calculated using a Core i5 PC with 4GB
RAM. After that, the same computer evaluates the control
laws and generates the control signals ui and wi for every
robot, which are transformed into the desired angular
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and their dynamics can be obtained as

α̇i =

[
cos θi −l sin θi

sin θi l cos θi

]

︸ ︷︷ ︸

Ai(θi)

[
vi

wi

]

, i = 1, ..., n, (30)

where Ai(θi) is the so-called decoupling matrix of the
robot Ri. Note that det(Ai(θi)) = l 6= 0. Then, it is possible
to design a control strategy to move αi to a desired location

using the control law [vi, wi]
T = A−1

i (θi) fi, i = 1, ..., n,
where fi is the desired dynamics of the coordinates αi.

Thus, extending the previous results for the case of point
robots, the control laws with exact velocities given in
(4)-(5), or the control laws with approximate velocities
expressed in (17)-(18), could be rewritten for unicycle
robots by

[
vi

wi

]

=
1

2
A−1

i (θi)(ūi), i = 1, ...n (31)

Figure 6. Kinematic model of unicycles

Figure 7. Irobot Create

where ūi are identical functions of the control laws ui

defined in (4)-(5) and (17)-(18), but depending on the
coordinates αi. Note that the dynamics of the coordinates
αi in the closed-loop system (29)-(31) is reduced to
αi = ūi, i = 1, ..., n. Therefore the analysis of
the formation tracking falls in the case of holonomic
robots studied in the Section 3 and 4. Note that these
input-output linearizations leave the orientation angles θi

uncontrollable.

6. Experimental work

The control strategies were implemented on an
experimental setup consisting of three unicycle-type
robots manufactured by IRobot® model Create, and a
vision system composed by a monochrome camera Genie
HM-1024 with ethernet communication, developed by
Teledyne Dalsa®. The camera captures the position of
two white circle marks placed on top of every robot, as
shown in the Fig. 7, pointing the coordinates (xi, yi) and
αi, respectively. The camera is installed at 2.5m height and
configured to work at 117 frames per second. Therefore,
the sampling period is given by 8 milliseconds and the
resolution of the camera is given by 1024 × 768 pixels
which produces a position resolution of 3mm2 per pixel.
Note that the workspace and the robots are covered in
black to highlight the white markings.

Using the white marks, the position and orientation of
every robot is calculated using a Core i5 PC with 4GB
RAM. After that, the same computer evaluates the control
laws and generates the control signals ui and wi for every
robot, which are transformed into the desired angular
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Figure 7. Kinematic model of unicycles

6. Experimental work

The control strategies were implemented using an experi‐
mental set-up consisting of three unicycle-type robots
manufactured by IRobot, the model Create, and a vision
system comprising a monochrome camera Genie HM-1024
with an Ethernet communication, developed by Teledyne
Dalsa. The camera captures the position of two white circle
marks placed on top of every robot, as shown in Fig. 5,
indicating the coordinates (xi,yi) and αi. The camera is
installed at a height of 2.5m and configured to work at 117
frames per second. Therefore, the sampling period is given
by 8 milliseconds and the resolution of the camera is given
by 1024×768 pixels which produces a position resolution of
3mm2 per pixel. Note that both the workspace and the
robots are covered in black in order to highlight the white
markings.

Using the white marks, the position and orientation of
every robot is calculated using a Core i5 PC with 4GB RAM.
The same computer subsequently evaluates the control
laws and generates the control signals ui and wi for every
robot, which are transformed into the desired angular
velocities for the robot wheels, by

= , = 1,...
2

i
i i

v Lwr w i n
r r
+ (32)

= , = 1,...
2

i
i i

v Lwl w i n
r r
- (33)

where wri and wli are the right and left wheel of each robot,
respectively, L =0.25m is the distance between two wheels
and r =0.03m is the radius of the wheels. Finally, the desired
angular velocities are sent via a wireless Bluetooth trans‐
mitter to every robot. The image processing and the control
law were developed in a software application using the
real-time programming of Matlab R2013a.

Note that the experimental set-up becomes a flexible
platform for emulating different formation-tracking
systems, from centralized to decentralized schemes, by
selecting the adequate information obtained from the
vision system to be used in the local control laws of each
robot.

To complement the control laws, a reactive secondary
control law for the avoidance of inter-robot collision was
programmed into the experiments. Although the preven‐
tion of possible collisions was achieved using a simple
reactive control law, in the experiments, none of the robots
were in danger of collision due to their initial conditions.
The analysis of non-collision in formation tracking is not
studied in this paper and will be addressed in further
research.

6.1 Experiments with exact velocities

Figure 8 shows an experiment of the control law Γ1 given
in (4) using the exact information of the derivative of m(t),
with n =3, k =1, km =1 and ℓ=0.15m. The marching path is the
circle given (in metres) by

m(t)= 0.5 + 0.4cos( 2π
40 t),0.5 + 0.4sin( 2π

40 t) . The vectors of the

relative positions are c21 = c32 = 0.6m,0  (a straight-line
shaped formation). The initial conditions, also given in
metres and radians, are given by x1,y1,θ1 = 2.23,0.68,1.56 ,
x2,y2,θ2 = 1.69,0.68,1.50  and x3,y3,θ3 = 1.14,0.66,1.65 . The

trajectories of the coordinates αi that are recorded by the
vision system are presented in Figure 8(a). The leader robot
R3 converges to the desired marching path whereas the
follower robots converge to the desired formation. The
evolution of xi, yi and θi is depicted in Figure 8(b). Note that
the experimental results are very close to the simulation
signals. Finally, the control outputs vi and wi are shown in
Figure 8(c).

The second experiment is given in Figure 9, which is now
dedicated to the control law Γ2 given in (5) using the exact
information of the robots’ velocities. The value of the
control gains k  and km are similar to the ones used in the
previous case. Now the robots are formed in a triangular
shape, given by the vectors c21 = 0.6,0.6  and c32 = 0.6,−0.6 .
The initial conditions are x1,y1,θ1 = 2.26,0.70,1.68 ,
x2,y2,θ2 = 2.03,1.45,2.85  and x3,y3,θ3 = 1.03,0.65,0.68 . The

trajectories of the coordinates αi that are recorded by the
vision system are presented in Figure 9(a). The evolution
of xi, yi and θi is depicted in Figure 9(b). The control outputs
vi and wi are shown in Figure 9(c). Similar to the previous
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case, the graphs show a good performance of the control
law, in which the robots converge to the desired formation
tracking and the experimental results are close to the
numerical simulation.

Figure 8. Experiment 1 using the control law Γ1

Figure 9. Experiment 2 using the control law xi

In both experiments, the orientation angles converge to the
same value although they are not controlled by the control
laws. In addition, note that the linear and angular velocities
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shown in Figures 8(c) and 9(c) converge to a positive value;
therefore, the robots after the transitory regime, continue
to move in an antoclockwise direction while facing the
front. It is shown in Figures 8(b) and 9(b) where the
trajectories of coordinates yi and Γ2, respectively, describe
the parametric functions of the circumference, and that the
orientation angles are positive and increasing.

The quantization error is considered to be sufficiently small
for this experiment, due to the precision of the camera and
the insignificance of its influence. This can be seen in
Figures 8 and 9, where the results show a ripple in the order
of the instrument’s resolution.

6.2 Experiments with approximate velocities

Figure 10 shows an experiment 3 using the control law Γ̄1

with τ =0.5. The marching path and desired vector of the
positions are similar to those of the experiment 1 shown in
Figure 8. Now, the initial conditions are
x1,y1,θ1 = 2.3679,1.1637,1.8659 ,
x2,y2,θ2 = 1.7655,1.1773,1.9130  and
x3,y3,θ3 = 1.1632,1.1920,1.9660 . The trajectories of the

coordinates αi, which are recorded by the vision system, are
presented in Figure 10(a). The evolutions of xi, yi and θi are
depicted in Figure 10(b). The control outputs vi and wi are
shown in Figure 10(c).

Finally, the fourth experiment is given in Figure 11, using
the control law Γ̄2 with τ =0.5. The marching paths and
desired vectors of the positions are similar to those of
Experiment 2 as shown in Figure 9. The initial conditions
are x1,y1,θ1 = 1.8747,0.7022,1.3280 ,
x2,y2,θ2 = 1.3245,1.3362,1.6792  and
x3,y3,θ3 = 0.6352,0.6170,1.4002 . The trajectories of the

coordinates αi recorded by the vision system are presented
in Figure 11(a). The evolution of xi, yi and θi is depicted in
Figure 11(b). The control outputs vi and wi are shown in
Figure 11(c).

Note that the trajectories in Experiments 3 and 4 are
modified due to the approximations of the velocities and
the performance of the robots deteriorating with respect to
the ideal case. The transient response of the control inputs,
as shown in Figures 10(c) and 11(c), exhibits a larger
overshoot with respect to the control inputs of Experiments
1 and 2, as presented in Figures 8(c) and 9(c), respectively,
with the worst being Experiment 4. Similar to Experiments
1 and 2, the linear and angular velocities converge to a
positive value; therefore, the robots continue to move in an
antoclockwise direction while facing the front, which is
verified by the trajectories depicted in Figures 10(b) and
11(b), respectively.

According to the main result detailed in Section 4, the errors
remain oscillatory around zero. These effects are shown in
Figure 12 for Experiments 3 and 4, respectively. Note that
due to propagation of the inexact measures of velocities

along the chain of robots, the behaviour of the errors
worsen in robots that move away from the leader. Thus, the
robot R1 exhibits the worst performance in the formation
tracking.

Figure 10. Experiment 3 using the control law Γ̄1 and τ =0.5
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7. Conclusion

This paper shows that, assuming perfect knowledge about
the positions and velocities of the robots and the marching

Figure 11. Experiment 4 using the control law Γ̄2 and τ =0.5

path, it is possible to guarantee the preservation of a rigid
formation and the group trajectory tracking of the robots.
However, during a decentralized formation tracking, the
robots measure only positions and the velocities must be
approximated. This paper incorporates the analysis of the
variables of approximate velocities within the closed-loop
systems, and some conditions are determined in order to
ensure that the errors are bounded. The desired outcome
occurs if the trajectory is sufficiently smooth and the bound
of the errors’ performance improves when the bandwidth
approximation increases for the velocities, recovering the
ideal case in the limit. The control laws were extended for
the case of unicycle-type robots with numerical simulations
and real-time experiments. In further research, the analysis

Figure 12. Graphics of errors using approximate velocities
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of control strategies with other formation-tracking topolo‐
gies and collision avoidance applied to different nonholo‐
nomic mobile robots will be studied.
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