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Abstract5

Sequential batch reactors are increasingly used in the purification and waste water treatment since it6

is one of the main innovative alternatives with great flexibility operation and low investment costs.7

The uncertainty is present in most practical and real cases. The effect of the uncertainty in the model8

parameters could be determined through a parametric sensitivity analysis. In this work we present9

the formulation of the Non Linear Model Predictive Control (NMPC) to optimal aeration policies10

on closed-loop using the SBR technology under conditions of uncertainty, using two approaches:11

stochastic and robust (NMPC) such that the target specified determined are achieved within the op-12

eration time.13
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1 Introduction15

Water biological treatment processes can be classified depending on the metabolic functions of mi-16

croorganisms as follows [20]: (a) aerobic processes, in which oxygen is the primary electron acceptor,17

(b) anoxic processes which is carried out in presence of low concentrations of molecular oxygen, and18

(c) anaerobic processes, carried out in the absence of oxygen. Depending on the form of association of19

microorganisms, they can be classified as of fixed growth or in suspension. In processes with biomass,20

the microorganisms grow adhered to an inert material whereas in the suspended biomass processes,21

the flocks are kept in suspension due to mixing. The aerobic process with suspended biomass is22

commonly referred to as activated sludge [14]. In a typical biological wastewater treatment process23

the degradation of organic matter by microorganisms occurs first followed by the separation of the24

treated water from the microorganisms. In a continuous process these stages are carried out in two25

tanks. In the first tank, also referred to as the biological reactor, the set of biochemical reactions are26

carried out allowing mineralization of pollutant organic material; in the second tank, a sedimenter27

is deployed and separates the microorganisms of the treated effluent. In batch systems both treat-28

ment processes are performed in the same tank, i.e. biochemical reactions followed by a phase of29

sedimentation and the subsequent draining of the reactor.30

The use of sequencing batch reactors (SBR), is one of the main innovative alternatives that has31

been used for the treatment of water effluents as shown in Figure 1. The SBR system operates as a32

dynamic system through a series of stages, i.e. (1) Filling, (2) Reaction, (3) Sedimentation, (4) De-33

cantation and (5) Idle. In the filling phase the substrate (waste water) is added to the reactor. In the34

reaction step, the microorganisms decompose the organic matter using the oxygen provided from35

aeration. In the sedimentation phase, the separation of solids to achieve a supernatant, clarified as36

effluent, takes place. In the decantation phase, the separation of solids is carried out without disturb-37

ing the settled sludge. In the idle stage the wastage of sludge is pumped to a digester anaerobic to38

reduce the volume of sludge to be scrapped. The SBR water treatment process offers the following39

benefits with respect to continuous processes: flexibility in the operation and reduced investment40

costs, since a single tank is employed as both reactor and settler.41

Mathematical models are widely used at the process design stage to specify the optimal set of42

operating conditions that meet the design goals at minimum cost. Typically, these decisions assume43

perfect knowledge of the process model parameters, and that those values may not be changing44

significantly during process operation.However, in practice the model parameters may change thus45

making the operation dynamically infeasible, i.e. the system may not meet the product specifications.46

While feedback control systems can be implemented to account for model parameter uncertainty, it47

is often difficult to state explicitly the amount of uncertainty that a feedback controller can tolerate48

before the system becomes infeasible, (unless uncertainty is part of the design of the feedback mech-49

anism). Another approach used to account for model uncertainty has to do with the deployment of50

stochastic and robust optimization approaches [8], [1], [37], [9]. In the stochastic and robust schemes,51

uncertainty is incorporated in the optimal design formulation as a probability distribution function52

or as upper and lower bounds on the uncertain parameters, respectively [38], [35], [6].53

In a previous work [2] we have proposed a deterministic optimization approach for the calcu-54
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Figure 1: Operation stages in a sequencing batch reactor.

lation of open-loop optimal control policies of SBR water treatment systems. In that work, it has55

been shown that fractional values of the aeration control actions resulted in more attractive solu-56

tions rather than using the traditional on/off control policies typically implemented in SBR systems.57

Accordingly, a non-linear programming formulation suffices for proper optimal control purposes58

and that a more challenging and intensive mixed-integer non-linear programming approach is not59

needed. In the present study, we extended that previous work to include the impact of model uncer-60

tainty on the performance of the optimal control policies. Hence, we propose robust and stochastic61

non-linear model predictive control schemes to deal with model parameter uncertainty. A sensitivity62

analysis was carried out to gain insight on the model parameters featuring the strongest influence on63

model response. For the stochastic formulation, the uncertain parameters were assumed to follow a64

user-defined probability distribution function and power series expansions where used to propagate65

the uncertainty effects into the process outputs. In the robust formulation, the uncertainty was mod-66

eled as lower and upper bounds on selected model parameters and a multi-scenario optimization67

approach was then used for its discretization.68

2 Problem definition69

The removal of pollutants from wastewater streams is a public health problem which demands tech-70

nically efficient and cost competitive strategies. Some of the proposed wastewater treatment pro-71

cesses involves chemical reaction systems from which pollutants are transformed into nontoxic com-72

pounds. The set of reactions are carried out in chemical reactors whose proper design and oper-73

ation are crucial for achieving efficient pollutant removal at minimum capital and operating costs.74

Amongst the approaches proposed for wastewater treatment, sequencing batch reactors (SBR) have75

shown great operating flexibility and profitability. Although there have been many published works76

addressing the design and operation of SBR’s, very few works have addressed the impact of process77

uncertainty on the performance of such reactors. The importance of taking into account uncertainty78
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during the operation of SBR’s turns out to be critical because otherwise the operation of these reactors79

can be infeasible and/or unprofitable.80

The problem under consideration can be formulated as follows:81

Given,82

• A dynamic model that describes the transient behavior of a wastewater treatment deploying83

microorganisms,84

• A set of nominal parameter values,85

• A set of uncertain process parameters with either a probability-based (stochastic scheme) or86

bound-based (robust scheme) description, and87

• Target values of those variables influencing water quality.88

Then, the problem consists in computing closed-loop optimal control policies of the aeration pro-89

files under model uncertainty such that the target values determining water quality are reached in90

minimum operating time deploying a robust and stochastic nonlinear model predictive control ap-91

proach.92

Mathematical model93

One of the most common mathematical models used for wastewater treatment is the ASM1 model94

[19], [18]; an extension of the model presented in [26], [23] is used in the present work. The activated95

sludge model 3 (ASM3) takes into account the energy storage to describe the biodegradable substrate96

and oxygen consumption. As shown in 2.1-2.8, the dynamic model used in this work consists of 897

states. The present model assumes that the organic matter and nitrogen are the main pollutants that98

must be removed from a domestic wastewater stream.99

dSs
dt

=

(
− raae
YHaer

− (raNO3 + raNO2)

YHanox

)
(1 + Sts) (2.1)

dXH

dt
= raae + raNO3 + raNO2 (2.2)

dXNs

dt
= raaNs (2.3)

dXNb

dt
= raaNb (2.4)

dSO
dt

= u(t) ·KLa(S
′′
0 − S0)−

(1− YHaer)

YHaer
raee −

(
3.43

YA1
− 1

)
raaNs −

(
1.14

YA2
− 1

)
raaNb (2.5)

dSNH4

dt
= −

(
− iNSS

YHaer
+ iNB

)
raae −

(
− 1

YA1
+ iNB

)
raaNs − iNBraaNb −

(
− iNSS

YHanox
+ iNB

)
raNO3

−
(
− iNSS

YHanox
+ iNB

)
raNO2 (2.6)

dSNO2

dt
=

raaNs

YA1
− raaNb

YA2
+

(1− YHanox)

1.14YHanox
(raNO3 − raNO2) (2.7)

dSNO3

dt
=

raaNb

YA3
− (1− YHanox)

1.14YHanox
raNO3 (2.8)
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where the terms for the chemical reactions are as follows:100

raae = µH

(
Ss

Ss +Ks

)(
SO

SO +KO1

)(
SNH4

SNH4 +KNH

)
XH (2.9)

raNO3 = µH1

(
Ss

Ss +Ks

)(
SNO3

SNO3 +KNO3

)(
KO21

KO21 + SO

)(
SNH4

SNH4 +KNH

)
XH (2.10)

raNO2 = µH2

(
Ss

Ss +Ks

)(
SNO2

SNO2 +KNO2

)(
KO22

KO22 + SO

)(
SNH4

SNH4 +KNH

)
XH (2.11)

raaNs = µA1

(
SO

SO +KO

)(
SNH4

SNH4 +KNH

)
XNs (2.12)

raaNb = µA2

(
SNO2

SNO2 +KNO21

)(
SO

SO +KO

)(
SNH4

SNH4 +KNH

)
XNb (2.13)

The description of the main states and the initial values of the states are shown in Table 1; Table 2101

lists the nominal values of the model parameters.102

Table 1: States initial values

State Description Value Units
(1) SS Carbonaceous substrate 1000 gCOD/m3

(2) XH Heterotrophic bacteria 500
(3) XNs Ammonia oxiders 100
(4) XNb

Nitrite oxiders 100
(5) SO Dissolved oxygen 0 gO2/m3

(6) SNH4 Ammonia 50 gN/m3

(7) SNO2 Nitrite 2 gN/m3

(8) SNO3 Nitrate 5 gN/m3

3 Robust non-linear dynamic optimization formulation103

It has been widely demonstrated that model uncertainty affects process operation and may lead to a104

loss in performance and process economics. In this section we consider the deployment of a model105

predictive control (MPC) strategy that specifies suitable control policies while considering the in-106

fluence of model uncertainty on process performance in closed-loop. Although feedback control107

systems have embedded robustness properties [25] they do not guarantee feasibility in the presence108

of plant-model mismatch since uncertainty is not explicitly considered in the control algorithm.109

In this work only time-invariant model uncertainty has been considered for both MPC schemes.110

That is, the true value of the uncertain parameters is not known with certainty; however, its value111

is assumed to remain constant during operation and lie between certain (user-defined) bounds or112

follow a (user-defined) probability distribution function. Therefore, there are at least two ways to113

approach the solution of optimization problems when it comes to consider the presence of model114

uncertainty, i.e. Stochastic and Robust optimization. In the stochastic optimization framework [8],115
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Table 2: Nominal parameter values

Parameter Value Units
KLa 1000 day−1

iNB 0.086 gN/gCOD
YHaer 0.1302
YA1 0.1327 gCOD/gN
YA2 0.0985 gCOD/gN
YA3 0.0331 gCOD/gN
iNSS 0.01
YHanox 0.0632 day−1

Sts 1.6
Ks 1 mgCOD/L
µH 0.6021 day−1

µH1 0.0511 day−1

µH2 0.0362 day−1

µA1 1.4 day−1

µA2 0.3 day−1

KO1 0.2 mgO2/L
KNH 0.1 mg/L
KO 0.8 mg/L
KNO2 0.25 mgN/L
KNO3 0.5 mgN/L
KO21 0.2 mgO2/L
KO22 0.2 mgO2/L
KNO21 0.5 mg/L
S
′′
0 7 mgO2/L
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[4] model uncertainty is represented as probabilistic distribution functions, whereas in the Robust116

optimization approach [1] ,[12] model uncertainty is represented as member of an uncertain set. The117

decision about which approach is more convenient for handling uncertainty depends on the avail-118

able information and the goals to attain by the designer. If enough uncertainty measurements are119

available, so a probabilistic distribution function can be established, then the stochastic approach can120

be a feasible approach for optimization under uncertainty. On the other hand, when only very few121

or no measurements are available, or the value of a given design parameter is unknown, but it can122

be described within a given set, then robust optimization is preferred. In this work, we will deploy123

both the robust and stochastic optimization approaches for handling uncertainty.124

There are several ways of representing uncertainty in robust optimization [9], [39]; in any case,125

the uncertain parameters are assumed to belong to some of the following uncertain sets: (1) Finite, (2)126

Interval-based, (3) Polytopic, (4) Norm-based, (5) Ellipsoidal and (6) Constrain-wise uncertainty. The127

selection as to how to describe model uncertainty totally depends upon the way uncertainty emerges128

in the problem under consideration. The first approach (Finite uncertainty) is one of the fundamental129

approaches to deal with uncertainty in robust optimization and it consists of assuming that the true130

value of the uncertain parameter is located within an uncertain set whose realizations are given in131

terms of lower and upper bounds. This is the representation that has been used in this work to model132

uncertainty.133

After process uncertainty has been addressed the following step in the robust optimization ap-134

proach consists in formulating the Robust Optimization Counterpart which consists in the approx-135

imation of the original uncertain optimization problem by a numerically tractable optimization for-136

mulation. There are several examples of how to deal with this approximation for linear or convex137

optimization problems for several types of uncertain sets [9]. However, for nonlinear programming138

problems such approximation can be difficult or impossible to establish. In these cases, the approach139

based on the deployment of scenarios [15], [34], [3] is a feasible way to take into account the effect of140

model uncertainty on optimization. Therefore, as shown in Figure 2, the approach consists in dis-141

cretizing the [XU −XL] uncertain interval into a number of scenarios (the total number of scenarios is142

denoted as Ns); within each scenario the value of the uncertain parameter remains constant. Hence,143

instead of solving a single optimization problem, as each process constraint is explicitly defined in144

terms of the scenarios considered for the uncertain parameters, i.e. a single constraint will be rep-145

resented in the robust formulation with Ns constraints, each evaluated at a particular realization in146

the uncertain parameter set. In the deterministic case, the solution of Ns optimization problem is147

sought assuming that uncertainty is present in only one model parameter. It should be stressed that148

deploying this approach for handling model uncertainty, the original uncertain optimization prob-149

lem is transformed into a larger deterministic optimization problem (with the size depending on the150

number of scenarios).151

While easier to implement, there are at least two disadvantages associated to the robust approach152

for handling model uncertainty. The first one is related to the fact that conservative solutions can be153

obtained from this approach since the optimized values in the decision variables have to meet system154

constraints for every realization considered in the uncertain parameter set. This is normally achieved155

at the expense of sacrificing performance. The second disadvantage was already highlighted and has156
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Figure 2: Multi-scenario approach to represent model uncertainty in an optimization framework.

to do with the fact that the robust multiscenario approach tend to produce larger optimization prob-157

lems as the number of scenarios increases, which may become computationally intractable. One way158

to deal with this problem consists in solving the resulting deterministic large scale problem using an159

optimization decomposition approach [16], [17]. In addition, the traditional or conventional robust160

optimization approach only handles “here and now” decisions meaning that all decision variables161

are calculated before uncertainty realization is known. However, improved optimal solutions can be162

obtained by also considering the calculation of “wait and see” decision variables [28]. Attempts have163

been reported [36], [5] to extend the robust optimization approach for dealing with two-stage uncer-164

tain problems in the way is performed in stochastic optimization [8]. A recent review on the effect165

of uncertainty on optimization can be found elsewhere [13]. Moreover, some interesting connections166

between robust optimization and flexibility problems [21] in Process System Engineering have been167

recently reported [29].168

An alternative option that can reduce the conservatism in the results is to treat the uncertain169

variables as random variables. That is, in the robust scheme, the uncertain parameters are discretized170

to a specific set of scenarios, each with an equal (uniform) probability of occurrence. In the stochastic171

approach, the uncertain parameters are treated as time-invariant random variables that are assumed172

to follow a probability distribution function, which is used to weight the realizations in the uncertain173

parameters. Thus, stochastic descriptions may reduce the conservatism in the solution at the expense174

of allowing violations to the process constraints. Nevertheless, the user can assign different levels175

of satisfaction to each constraint based on their level of importance (i.e. risk). Both the robust and176

stochastic approaches are presented here in the context of MPC, which is discussed next.177

Model predictive control is the one of the most powerful strategies to perform control for chemical178

systems due to its ability to handle explicit constraints and nonlinearities embedded in mathematical179

models as well as dead time and multivariable systems [24], [10], [31], [11]. Moreover, in this work180

we consider the presence of uncertainty in some model parameters on the closed-loop performance.181

This control strategy is known as uncertain non-linear model predictive control. Figure 3 shows182

the typical behavior of a closed loop model predictive control system. At every k sampling time m183

control actions are computed in advance deploying a prediction horizon composed of m sampling184

times; the corresponding control actions are denoted by uk+m. Although several control actions are185

computed, only the first control action is implemented ignoring the remaining control actions. When186

the new measurements are available, the nonlinear MPC (NMPC) algorithm is updated and a new187

calculation of the control action is performed.188

The multi-scenario uncertain NMPC reads as follows:189
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Figure 3: MPC Approach
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Minimize Ωxi,u =

Ns∑
i

ωiJi(xi,u, θ̂) (3.14)

Subject to :

dxi
dt

= fi(xi,u, Θi), i = 1, ..., Ns (3.15)

hi(xi,u, Θi) ≤ 0, i = 1, ..., Ns (3.16)

xL ≤ xi ≤ xU (3.17)

uL ≤ u ≤ uU (3.18)

where J is the objective function, x ∈ <n is the state vector, u ∈ <m is the vector of manipulated190

variables, Θ ∈ <Np is the set of parameters with uncertainty, w is a weighting function, f is the map191

representing the dynamic process behavior and h is the set of system constraints. In this work, L rep-192

resent the lower bound, U is an upper bound and t is the processing time and the subscript i denotes193

a given scenario and Ns is the total number of scenarios. To meet the water quality requirements we194

have deployed the following form of objective function:195

Ji =

∫ tf

0

{
(Ss(t)− St

s)
2 + (SNH4(t)− St

NH4
)2 + (SNO3(t)− St

NO3
)2 + ((SNO2(t) + SNO3(t))− St

NO23
)2
}
dt

(3.19)
where the superscript t stands for target values so that treated water complies with demanded pu-196

rity requirements. In the previous optimization formulation control actions are independent of the197

scenarios. This means that the same value of control actions must comply with all restrictions of the198

process in all the scenarios and be optimal with respect to the objective function.199

Similarly, the corresponding stochastic NMPC formulation is as follows:200

Minimize φxi,u =

T−1∫
t=0

Jt

(
xi,u, θ̂

)
+

T∫
t=T−1

J
′
t

(
xi,u, θ̂

)
(3.20)

Subject to :

Jt =
(
St

S − SS(t)
)2

+
(
St

NH4 − SNH4(t)
)2

+
(
St

NO3 − SNO3(t)
)2

+ (3.21)(
St

NO2 + St
NO3 − (SNO2(t) + SNO3(t))

)2
J
′
t =

(
St

S − SS(t)−KS

)2
+
(
St

NH4 − SNH4(t)−KNH4

)2
+
(
St

NO3 − SNO3(t)−KNO3

)2
+(

St
NO2 + St

NO3 − (SNO2(t) + SNO3(t) +KNO2 +KNO3)
)2 (3.22)

Kd =

Np∑
p=1

ηd,p
∂xd
∂θp
|
t=T

d ∈ {S,NH4, NO2, NO3} (3.23)

t = 0,∆t, ...., T − 1, T (3.24)

T − 1 = (N − 1)∆t (3.25)

T = N∆t (3.26)
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where φ(xi,u) is the stochastic NMPC objective function whereas θ̂ ∈ RNp is the set of uncertain201

parameters, which are fixed in the stochastic NMPC framework to its nominal (expected) values; T202

is the final time, i.e. (tf = T = N∆t). Moreover, Kd represents a penalty (back-off) term added to203

each organic matter that accounts for the variability in the uncertain parameters Θ. The penalty term204

Kd is defined as the product of a user-defined weight factor (η ∈ RdxNp) and the sensitivity of the205

organic matter with respect to uncertain parameters at the final time T. That is, the present approach206

performs a first order power series expansion to estimate output variability due to model uncertainty.207

The weight factor ηd,p is a user-defined weight that is used to account to the spread (variability) in208

the distribution of the dth organic matter due to uncertainty in the pth uncertain parameter whereas209

the sensitivity terms can be obtained from a sensitivity analysis (see Parametric sensitivity analysis210

section). Setting ηd,p to large values imposes stringent restrictions on the concentrations of the dth211

organic matter whereas lower values reduces the impact of variability of that specie in the stochastic212

NMPC calculations. The present approach is only an approximation since process variability is rep-213

resented here as a first-order power series expansion that accounts for the sensitivity of the output214

variables with respect to the uncertainty parameters, at the final time T. Note that this approach has215

been successfully used in the literature, see e.g.[30],[27].216

In this work the discretization of the dynamic mathematical model is carried out using the method217

of collocation orthogonal on finite elements [7]. Thus, the time trajectory is divided in a finite number218

of finite elements, inside each finite element the dynamic behavior is approximate using internal219

collocation points. Accordingly, the process model equation shown in 3.15 is represented as follows:220

xf,c,i = xof,i + thfΣkΛk,cẋf,k,i, f = 1, ..., Nfe; c = 1, ..., Nc (3.27)

xof,i = xof−1,i + thf−1ΣcΛc,Ncẋf−1,c,i, f = 2, ..., Nfe (3.28)

ẋf,c,i = f(xf,c,iuf,c,Θi), f = 1, ..., Nfe; c = 1, ..., Nc (3.29)

xof,i = xinitf , f = 1 (3.30)

where Nfe is the number of finite elements, Ne is the number of internal collocation points, hf is221

the length of each finite element, t is the dimensionless time, Λ is the collocation matrix and theta is222

the uncertain parameter vector. xnf,c,i represents the value of the nth system state at each one of the223

discretized points c of finite element f in the scenario s, xonf,i represents the value of the nth system224

state at the beginning of each finite element, ẋnf,c,i is the first-order derivative of the n-th state. The225

superscripts indicate the values of initial states and state values in each of the finite elements.226

4 Parametric sensitivity analysis227

In the practice, most of the mathematical models intended to approximate the behavior of a given sys-228

tem are prone to plant-model mismatch. In order to identify the parameters that may critically affect229

the operation of this process, a local sensitivity analysis was performed to make an assessment about230

which of the parameters have deeper impact on the performance of the system under consideration.231

Typically, the parametric sensitivity analysis is performed as a local linear analysis procedure mean-232
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ing that their results are only strictly valid around the linearization region. Using this approach, the233

parametric sensitivity analysis can allow identification of those parameters featuring the strongest234

influence on system behavior.235

To compute the sensitivity coefficients we proceed as follows. Assuming that a dynamic mathe-236

matical model is available:237

dx

dt
= f(x, t,p) (4.31)

where x stands for the state vector and p is the vector of system parameters. The equations describing238

the way a state depends upon a given parameters reads as follows:239

dS

dt
=

(
∂f

∂x

)
S +

(
∂f

∂p

)
(4.32)

where S = [Sij ] and Sij = ∂xi
∂pj

. Moreover, Sij are named the sensitivity coefficients. Recognizing240

that the magnitudes of the sensitivity coefficients can be different by several orders of magnitude,241

normally a kind of scaling procedure is deployed so to compare the magnitudes of Sij on a similar242

basis. In this work we have used the following scaling procedure:243

Sij =

(
∂xi
∂pj

)(
pj
xi

)
(4.33)

5 Results and discussion244

After testing all the parameters described in Table 2 we arrived to the conclusion that only the fol-245

lowing model parameters have significative influence on the dynamic response of the SBR system:246

K01, YHaer, Ya1, Ya2 and Ya3. The dynamic sensitivity plots are shown in Figure 4. These results helped247

us to establish that only that set of parameters should be examined to test their potential influence on248

system’s performance in closed-loop.249

Table 3: Lower and upper bounds on the nominal value of uncertain parameters. The asterisk sym-
bol stand for the nominal values, ω represents a weighting factor stressing the importance of each
uncertain value and ∆ are the minimum and maximum deviation (as percentage) of each parameter
with respect to the nominal values.

ω K01 YHaer Ya1 Ya2 Ya3

0.2 0.18 0.06 0.06 0.03 0.01
0.2 0.2∗ 0.08 0.08 0.06 0.02
0.2 0.25 0.1302∗ 0.1327∗ 0.0985∗ 0.0331∗

0.2 0.3 0.16 0.16 0.11 0.04
0.2 0.35 0.18 0.18 0.13 0.05
∆ (10,75) (54, 38) (54, 35) (70, 32) (70,51)
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Figure 4: Sensitivity plots displaying the influence of system parameters on the response of the SBR
system.

Based on the above, robust NMPC was considered first in the analysis. Accordingly, bounds on250

the uncertain parameters around their nominal values were considered as shown in Table 3. To ad-251

dress the impact of parameter uncertainty on closed-loop optimal control, the uncertain parameter252

set was discretized to five realizations or scenarios. Each scenarios was assumed to have the same253

probability weight reflected trough the ω term. As shown in Table 3, the percentage of uncertainty254

was considerable and in some cases this percentage was chosen as the last parameter value which255

returned a feasible solution. The results discussed in this section are local optimal solutions obtained256

deploying the nonlinear programming CONOPT solver available in GAMS [33]. For the discretiza-257

tion of the SBR dynamic model 20 finite elements and 3 internal collocation points were used. In the258

robust NMPC framework, 5 prediction horizon intervals and 30 min sampling time were considered.259
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In a previous work [2] we have deployed the same SBR dynamic model for performing open-260

loop optimal control calculations. In that study we demonstrated that a well structured nonlinear261

programming formulation is only needed to compute open-loop dynamic profiles and allowing frac-262

tional values of the feed stream oxygen control valve (instead of on/off behavior) would help to263

obtain improved control profiles. In addition to those features, in the present work we have con-264

sidered the presence of model uncertainty and deployed a robust nonlinear model predictive control265

approach to accommodate model uncertainty such that the impact of uncertainty does not deteriorate266

the control performance behavior. Then, the effect of model uncertainty is addressed by a combina-267

tion of feedback control action and a proper robust optimization formulation. Following, the results268

of these two combined mechanisms are discussed.269

In Figures 5-9 the closed-loop optimal control results are shown for uncertainty in theK01, YA1, YA2,270

YA3 and YHaer parameters, respectively. As it can be observed, in most of these cases the difference271

in the performance of the control actions between the deterministic and the uncertain cases is not272

significant. Moreover, all the water quality requirements are fully met. These results are interest-273

ing especially when recalling that the magnitude of the uncertainty in each one of the parameters is274

large as shown in Table 3. Moreover, the robust non-linear model predictive control scheme is able275

to cope with such large parameter uncertainty values. From the same set of plots we can observe276

that although the processing time (around 9.7 hr) was slightly larger than the one found in our pre-277

vious work (8.5 hr) this is due to the fact that in the present work a different objective function was278

deployed. However, the presence of model uncertainty did not demand longer processing times for279

meeting purity specifications.280

The situation is different when considering simultaneous uncertainty in all the model parame-281

ters. As shown in Figure 10 this time the performance difference of the deterministic and robust282

control actions is larger with respect to the cases in which uncertainty in a single parameter was con-283

sidered. In fact, in Figure 10(f) we observe that the robust aeration control action oscillates around284

the deterministic control action. Note that even for this extreme case no additional processing time285

was required to meet water quality requirements. This result is important since it means that water286

quality specifications can be met for any of the values of the uncertain parameters without evident287

degradation of the control performance.288

The performance of the SBR plant when the stochastic NMPC formulation presented in equa-289

tion 3.21 is employed in the calculations of the optimal control actions is presented next. A typical290

assumption in engineering is to consider that the uncertain parameters follow a normal probability291

distribution with specific means and standard deviations [32]. As shown above, a parametric sensi-292

tivity analysis was carried out for the SBR plant. That analysis showed that the model parametersK01293

and YHaer affect the performance of the activated sludge process significantly, as shown in Figures 4294

a) and e), respectively. This information can therefore be used in the stochastic NMPC formulation to295

account for the variability in the organic matter due to uncertainty inK01 and YHaer. Hence, these pa-296

rameters were assumed to be the uncertain parameters in the present stochastic NMPC formulation,297

i.e. Θ = K01, YHaer. To simplify the analysis, K01 and YHaer were assumed to be normally distributed298

uncertain parameters with expected (nominal) values and covariance matrix defined as follows:299
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Figure 5: Dynamic local optimization results considering uncertainty in the K01 parameter: Continu-
ous line refers to the deterministic case, while dashed line refers to robust optimization results. (a)-(e)
composition profiles and (f) aeration control action.
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Figure 6: Dynamic local optimization results considering uncertainty in the YA1 parameter: Continu-
ous line refers to the deterministic case, while dashed line refers to robust optimization results. (a)-(e)
composition profiles and (f) aeration control action.
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Figure 7: Dynamic local optimization results considering uncertainty in the YA2 parameter: Continu-
ous line refers to the deterministic case, while dashed line refers to robust optimization results. (a)-(e)
composition profiles and (f) aeration control action.
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Figure 8: Dynamic local optimization results considering uncertainty in the YA3 parameter: Continu-
ous line refers to the deterministic case, while dashed line refers to robust optimization results. (a)-(e)
composition profiles and (f) aeration control action.

18



0 2 4 6 8 10
5

10

15

20

25

30

35

40

45

50

55

Time [h]

S
N

H
4
 [
g
N

/m
3
]

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [h]

S
N

O
3
 [
g
N

/m
3
]

(b)

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

Time [h]

S
N

O
2
 +

 S
N

O
3
 [
g
N

/m
3
]

(c)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [h]

S
O

 [
g
O

2
/m

3
]

(d)

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

1000

Time [h]

S
S

 [
g
C

O
D

/m
3
]

(e)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [h]

A
ir
 f
lo

w
 [
L
/h

]

(f)

Figure 9: Dynamic local optimization results considering uncertainty in the YHaer parameter: Con-
tinuous line refers to the deterministic case, while dashed line refers to robust optimization results.
(a)-(e) composition profiles and (f) aeration control action.
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Figure 10: Dynamic local optimization results considering simultaneous uncertainty in all parame-
ters: Continuous line refers to the deterministic case, while dashed line refers to robust optimization
results. (a)-(e) composition profiles and (f) aeration control action.
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[
k̂o1, ŶHaer

]
= [0.2, 0.1302] (5.34)

V (k01, YHaer) =

[
900× 10−6 0

0 381.421× 106

]
(5.35)

Two case studies assuming η = 1 and η = 2 were considered. As in the robust NMPC, the nonlinear300

programming CONOPT solver available in GAMS [33] was used to generated the solutions presented301

in this section. To validate the results, the performance of the stochastic NMPC implementation302

was tested by simulating the SBR process in closed-loop using 1,000 Monte Carlo realizations in the303

uncertain parameters. As shown in Figure f), i), the amount of organic matter at the final time, i.e.304

carbonaceous substrate (SS), ammonia (SNH4), nitrites and nitrates (SNO2 +SNO3), is reduced when305

a higher weight is used in the analysis (η = 2) thus enabling a higher probability of satisfaction of306

the water quality constraints:307

SS (T ) ≤ St
S (5.36)

SNH4 (T ) ≤ St
NH4

(5.37)

SNO2 (T ) + SNO3 (T ) ≤ St
NO3−NO2

(5.38)

where St
S ,St

NH4
,and St

NO3−NO2
are set to 50, 10 and 15, respectively [22]. When the penalty term308

is not considered in the analysis, i.e. η = 0, none of the water quality restrictions shown in equa-309

tions 5.36-5.38 are satisfied under uncertainty. As shown 11 a) the mean concentration of SS (85.24 g310

COD/m3) is much greater than the desired concentration. On the other hand, Figures 11 (b) and (c)311

show that when η = 1 and η = 2, the mean SS concentration is 44 g COD/m3 and 40 g COD/m3,312

respectively, which meet the water quality requirements for this specie at the final time T. A similar313

result was observed for the SNH4 concentration. As shown in Figures 11 (d), (e) and (f) the mean314

value concentration for this specie is reduced from 14.19 g N/m3 to 12.32 g N/m3 and 11 g N/m3.315

These results show that the use of higher weights increase the probabilities of complying with the316

water quality constraints at the final time.317

Figure 12 shows the corresponding time-trajectory profile for SNH4 . As shown in the Figure, the318

penalty term in the stochastic formulation ensures that the SNH4 concentration constraint is met re-319

quiring twice the time when compared to the nominal case; that is, the proposed stochastic approach320

increases the probability of constraint satisfaction at the final time T. It can be shown that, larger321

values assigned to the weight η can increase constraint satisfaction of the amount of matter at the322

final time at the expense of producing more conservative control actions. To further validate the re-323

sults, the sum of squared errors (SSE) was calculated for each of the simulations performed using the324

stochastic NMPC framework. The SSE was calculated as follows:325

SSE =

∑r
i=1

(
Si
d (T )− St

d

)2
r

(5.39)
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Figure 11: Histograms results for: SS distribution in (a) nominal case, (b) stochastic case η = 1 and
(c) stochastic case η = 2. SNH4 distribution in (d) nominal case, (e) stochastic case η = 1 and (f)
stochastic case η = 2. SNO2 + SNO3 distribution in (g) nominal case, (h) stochastic case η = 1 and (i)
stochastic case η = 2. The red dashes lines refer to the components constraints
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(c) (η = 2)

Figure 12: SNH4 profiles in (a) nominal case, (b) stochastic case 1 (η = 1), (c)stochastic case 2 (η = 2).
Dashes black lines show the water constraint for SNH4

Table 4: Sum of squared errors (SSE): stochastic NMPC

SSE SS SNH4 SNO2 + SNO3

Nominal Case 1454.58 20.19 209.18
Stochastic case 1 (η = 1) 427.23 4.23 71.35
Stochastic case 2 (η = 2) 268.05 3.41 58.45

where r is the number of simulations, Si
d(T ) the value of the ith observation at the final time and St

d326

is the desired value.327

As shown in Table 4, the SSE only represents 28.77% and 18.05% of the SSE obtained for the SS328

specie in the nominal case. Likewise, the behavior of the SNH4 component improved approximately329

80% and 84% with respect to the nominal case when setting η to 1 and 2, respectively. A similar330

observation was made for the remaining organic matter. These results indicate the importance of331

implementing a penalty (back-off) term in the NMPC objective function to account for process output332

variability due to model uncertainty.333
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6 Conclusions334

Nowadays, there is a concern on water resources and their relationship with energy trough the335

energy-water nexus. One of the facets of this nexus is related to minimum energy consumption336

for water treatment processes. However, there are some issues that in practice can make hard to337

obtain reduced energy consumption. Typically, nominal parameter values are employed to identify338

suitable operating conditions. However, in practice the value of some parameters can be unknown339

or vary meaning that the expected process performance may not be realized. In this work, we have340

shown that during the normal operation of SBR water treatment processes, the impact of model un-341

certainty on some of the more relevant parameters can be tolerated up to the point that target water342

purity requirements can be met even in the presence of uncertainty in the model parameters. To cope343

with parameter uncertainty, we deployed robust and stochastic non-linear model predictive control344

strategies for handling uncertainty in closed-loop for the SBR process. It is important to stress that the345

presence of uncertainty did not result in significant performance degradation in the control system.346
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