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Abstract

Within the context of dynamical systems and statistical mechanics we present the

following work. A particularly interesting problem is how a given collective dynamics

(for instance, a synchronous motion) can be preserved when important changes oc-

cur in the complex dynamical system. Recently, it has been demonstrated that many

large-scale complex dynamical networks display a collective synchronization motion.

We also know that most of the real world networks are not stationary, in the sense that

they are growing, with new nodes continuously being added to the graph (WWW, In-

ternet, Science Citation index, regulatory networks, are just a few of such examples).

Therefore it comes out a natural question on how these networks can preserve a given

collective dynamics or functioning, while the process of their growth is taking place

in time. We propose to develop a methodology to extend some classic results of the

dynamical systems theory, preserving the structure of the signs of the real parts of the

eigenvalues of the Jacobian matrix in its equilibrium points of the dynamical system.

In particular, we present some extensions of the stable manifold theorem and the cen-

ter manifold theorem. The developed methodology is used to study the problem of

preservation of synchronization in chaotic dynamical systems, in particular in the case

of dynamical networks. In this work using matrix theory tools, specifically, the meth-

ods for triangularization of matrices, the Kronecker product, the multiplicative group

structure for triangular matrices, the closure under product and sum of positive defined

triangular matrices and the eigenvalues sign-preservation for triangular matrices.The

results on preservation of stability and synchronization based on the extensions of the

stable manifold theorem and the center manifold theorem show that stability and syn-

chronization can be preserved by transforming the linear part of the synchronization

system which, in dynamical networks, is related to the connectivity of nodes. The

transformation is performed in time domain. Thus, the results can be also used in the
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chaos suppression problem. The results include very relaxed conditions to preserve

the stability and synchronization. An example is included to illustrate the results.

1 Introduction

A complex network is a large set of interconnected nodes, in which a node is a fundamental

unit, that can have different meanings in different situations, such as chemical substrates,

microprocessors, computers, schools, companies, papers, webs, people, and so on [1, 3,

6–8, 12, 15, 19, 20, 23–25]. The theory of complex networks seems to offer an appropriate

framework for such a large-scale analysis in a representative class of complex systems, with

examples ranging from cell biology and epidemiology to the Internet [1,6,23]. These large-

scale complex networks often display better cooperative or synchronous behaviors among

their constituents.

The complex networks were studied by graph theory, where a complex network is de-

scribed by a random graph, for which the basic theory was introduced in [11]. Recently,

in [24], it is introduced the concept of small-world networks to describe a transition from

a regular lattice to a random graph. These networks exhibit a high degree of clustering as

in the regular networks and a small average distance between two nodes as in the random

networks. Moreover, the random graph model and the small-world networks model are

both homogeneous in nature. However, in [6], empirical results show that many large-scale

complex networks are scale-free, such as the Internet, the WWW, and metabolic networks,

among others. Notably, a scale-free network is inhomogeneous in nature, i.e., most nodes

have very few connections but a small number of particular nodes have many connections.

Several feedback schemes for the chaos suppression and synchronization have been

widely studied in last two decades (see the reviews in [3, 7, 8, 19, 20, 25]). More recently,

the complex networks have opened new challenges for the stabilization of the chaotic dy-

namics [8]. In this direction, a new problem is to study the conditions under which the

stabilization is kept intact during transformation induced by the (feedback or feedforward)

interconnections of dynamical systems in a network; i.e., the stability preservation of com-

plex networks. The study of the stability preservation makes sense in the chaos control

problems. As matter of fact, the generalized synchronization can be derived even for dif-

ferent systems by finding a diffeomorphic transformation such that the states of the slave

system can be written as a function of the states of the master dynamics (see [12] and

references therein).

Recently in [4] it is shown that commonly used statistical properties—including the

degree distribution, degree homogeneity, average degree, average distance, degree correla-

tion, and clustering coefficient—can fail to characterize the synchronizability of networks.

In general, the eigenvalues are among the intrinsic network features which determine the

dynamics and which are not derivable from the statistical characteristics. Therefore in the

present work, we adopt an spectral approach for analysis of synchronization of complex

networks, and we restrict our attention to an particular class of complex networks, modeled

by autonomous nonlinear dynamical systems, where the linear part of the vector field is
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related to the connectivity of the nodes.

The study of the preservation of stability in complex network and nonlinear autonomous

dynamical system is not new, for example is well-known that using a change of variables be-

tween systems, i.e., using a diffeomorphism in the neighborhood of the origin, the first sys-

tem is either stable, asymptotically stable or unstable if and only if the second system (the

transformed system) is either stable, asymptotically stable or unstable, respectively.Similar

results are obtained by computing the multiplication of the vector field in the nonlinear dy-

namical system by a continuously differentiable function which is positive at the origin [17].

In the case of linear dynamical system there exist several results of preservation of stability,

for instance in [10, 14, 22] asymptotically stability is preserved using transformations on

rational functions in the frequency domain. Some of these transformations can be inter-

preted as a special class of noise present in the system also as perturbation on the value of

the physical parameters involved in the description of the model. However, the problem of

preserving stability by only transforming the Jacobian matrix evaluated at the origin, with

minimal restrictions about the nonlinear part of the vector field in nonlinear autonomous

systems, has not been studied in depth.

Nevertheless, the problem of the stability preservation has not been addressed for the

case of a nonlinear systems with chaotic dynamics, with the unique exception of [13] where

the problem, particularly interesting, of how a given collective dynamics (for instance, a

synchronous motion) can be preserved when important changes occur in the dynamical

system, has been studied. This issue is important for the case of networking systems. We

know that most of real world networks are not stationary, in the sense that they are growing,

with new nodes continuously being added to the graph (WWW, Internet, Science Citation

index, regulatory networks, are just a few of such examples). Therefore it comes out a

natural question on how these networks can preserve a given collective dynamics or func-

tioning, while the process of their growth is taking place in time. The stability preservation

is studied in [13] for the chaotic synchronization problem. The results show that stability

can be preserved by transforming the linear part of the synchronization system which, in

complex networks, is related to the connectivity of nodes. Thus, the results can also be

used in the chaos suppression problem. This work is inspired by the same objective, there-

fore two extensions to the Proposition 3 in [13] are presented: an extension of the local

stable-unstable manifold theorem and an extension of the center manifold theorem based in

the preservation of the signature of the linear part of the vector fields in nonlinear dynam-

ical systems. The results are applied to the chaotic synchronization problem. As we shall

see, the results depart from the hypothesis of the existence of a constant state feedback as

nominal synchronizing force.

In this chapter, for a first approximation to the problem of preservation of synchroniza-

tion, our attention is restricted only to uncoupled networks, i.e., we work with autonomous

nonlinear dynamical systems. We will give some necessary antecedents so that the reader

can understand with facility the results. Thus the Chapter is organized as follows. In sec-

tion 2, we present some definitions and results about upper triangular matrices, positive

definite matrices and Kronecker product of matrices. In section 3, the Fundamental Theo-
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rem for linear systems, the local Stable-Unstable Manifold Theorem, the Center Manifold

Theorem, The Hartman-Grobman Theorem and the concept of group action are introduced.

In section 4 the main result is presented as a generalization of Proposition 3 in [13]. In

section 5 we will show that it is possible to preserve synchronization under a class of trans-

formations defined in section 5 and an method for that issue is presented. The numerical

experiments on the stability preservation for chaotic synchronization are shown in Section 6.

Finally, a conclusion is given in Section 7.

2 Preliminaries results on matrices

In this section, we present some definitions and necessary results about groups and proper-

ties of upper triangular matrices, positive definite matrices and specific properties of Kro-

necker product of matrices.

Definition 2.1. Let λ be an eigenvalue of the n × n matrix A of multiplicity m ≤ n. Then

for k = 1, . . . , m, any nonzero solution w of

(A−λI)k w = 0

is called a generalized eigenvector of A.

Let wj = uj + vj be a generalized eigenvector of the matrix A corresponding to an

eigenvalue λj = aj + ibj (note that if bj = 0 then vj = 0). And let

B = {u1, v1, . . . , uk, vk, . . . , um, vm}

be a basis of R
n (with n = 2m − k as established by Theorem 1.7.1 and Theorem 1.7.2

in [21]).

Definition 2.2. We define the stable, unstable and center subspaces, Es, Eu and Ec re-

spectively, of a linear system ẋ = Ax, as

Es = span {uj , vj |aj < 0}

Ec = span {uj , vj |aj = 0}

Es = span {uj , vj |aj > 0} ;

that is, Es, Eu and Ec are the subspaces of R
n spanned by the real and imaginary parts

of the generalized eigenvectors wj corresponding to eigenvalues λj with negative, zero and

positive real parts respectively.

Now consider the upper triangular matrices with complex or real elements of the form




λ1 ∗ . . . ∗

0 λ2

. . .
...

...
. . .

. . . ∗
0 . . . 0 λn




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where λ1, . . . , λn are the eigenvalues. With the multiplication (or usual product) of matrices

given by 



µ1 ∗ . . . ∗

0 µ2

. . .
...

...
. . .

. . . ∗
0 . . . 0 µn









λ1 ∗ . . . ∗

0 λ2

. . .
...

...
. . .

. . . ∗
0 . . . 0 λn





=





µ1λ1 ∗ . . . ∗

0 µ2λ2

. . .
...

...
. . .

. . . ∗
0 . . . 0 µnλn





and the addition of matrices given by





µ1 ∗ . . . ∗

0 µ2

. . .
...

...
. . .

. . . ∗
0 . . . 0 µn




+





λ1 ∗ . . . ∗

0 λ2

. . .
...

...
. . .

. . . ∗
0 . . . 0 λn





=





µ1 + λ1 ∗ . . . ∗

0 µ2 + λ2

. . .
...

...
. . .

. . . ∗
0 . . . 0 µn + λn




.

We denote by ∆n the set of all upper triangular matrices of n × n with real or complex

elements. It is well-known that this set, ∆n, is a non-commutative group with the multipli-

cation of matrices, and it is a commutative group with the addition of matrices. Also, the

distributive property is valid in this set, but ∆n is not a field as the real or complex numbers.

Notice that the eigenvalues of the product of upper triangular matrices are the product of

eigenvalues of both upper triangular matrices, similarly for the addition of upper triangu-

lar matrices, their eigenvalues are the addition of eigenvalues from both upper triangular

matrices.

Notice that the subset ∆npd
⊂ ∆n with all diagonal elements being strictly positive is

a multiplicative subgroup of ∆n. The subset ∆npd
is closed with respect to the addition

of matrices and then a semigroup, i.e., the addition operation is associative, without neutral

element or identity, and in general for an element M ∈ ∆npd
there does not exist the inverse

element M−1 ∈ ∆npd
.

The following set play an important roll in this work:

ΛN =
{
M ∈ R

n×n : M = NTMN−1 with TM ∈ ∆npd

}

where N ∈ R
n×n is a nonsingular fixed matrix.
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Notice that ΛN is a non-commutative group with the multiplication of matrices, and it

is a semigroup with the addition of matrices. Again, the distributive property is valid in this

set, but ΛN is not a field as the real or complex numbers.

The following result is known as Schur’s Unitary Triangularization Theorem.

Lemma 2.1 ( [18]). Given an n by n matrix A with eigenvalues λ1, . . . , λn in any pre-

scribed order, there is an unitary n by n matrix U such that

TA= UAU⊤

with TA an upper triangular matrix and the diagonal elements are the eigenvalues of A,

i.e., tii = λi. Furthermore, if the entries of A and its eigenvalues are all real, U may be

chosen to be real orthogonal, i.e., U ∈ R
n×n such that UU⊤ = U⊤U = I .

Due to Lemma 2.1, any matrix A of order n × n is similar to one upper triangular

matrix TA via an unitary matrix U , i.e., any n by n matrix A is triangularizable.

Definition 2.3. If

A =





a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm




B =





b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bn1 bn2 · · · bnn




,

then the (right) Kronecker product of matrices A and B, written A⊗B, is defined to be the

partitioned matrix

A ⊗ B =





a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
. . .

am1B am2B · · · ammB




,

this is a mn × mn matrix.

In the following result, we state the main properties of the Kronecker product of A and

B, written A ⊗ B.

Lemma 2.2 ( [18]). If the orders of the matrices involved are such that all the operations

below are defined, then

1. For a real or complex number σ, (σA) ⊗ B = A ⊗ (σB) = σ (A ⊗ B);

2. (A + B) ⊗ C = A ⊗ C + B ⊗ C;

3. A ⊗ (B + C) = A ⊗ B + A ⊗ C;

4. A ⊗ (B ⊗ C) = (A ⊗ B)⊗C;
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5. (A ⊗ B) (C ⊗ D) = (AC ⊗ BD);

6. A ⊗ B = (A ⊗ In) (Im ⊗ B) = (Im ⊗ B) (A ⊗ In) where In is the identity matrix

of n × n and similarly for Im;

7. (A ⊗ B)−1 = A−1 ⊗ B−1;

8. The eigenvalues of A ⊗ B are the mn numbers λiµj where λi, i = 1, 2, . . . , m are

the eigenvalues of A and µj , j = 1, 2, . . . , n are the eigenvalues of B.

A consequence of these properties is that the Kronecker product of upper triangular

matrices is again an upper triangular matrix.

3 Preliminaries results of dynamical systems

In this section, basic and classical results on properties of dynamical systems are introduced.

Specifically, the Fundamental Theorem for linear systems, the local Stable-Unstable Man-

ifold Theorem, the Center Manifold Theorem, The Hartman-Grobman Theorem and the

concept of group action are introduced like antecedent for the next section.

First, we present the Fundamental Theorem for linear systems in an informal form.

Let A be an n × n matrix. The fundamental Theorem establishes that for x0 ∈ R
n the

initial value problem

ẋ = Ax, x(0) = x
0

has unique solution for all t ∈ R which is given by

x(t) = eAtx0.

The mapping eAt : R
n → R

n is called the flow of the linear system.

Definition 3.1. If all eigenvalues of the n × n matrix A have nonzero real part, then the

flow, i.e., eAt, is called a hyperbolic flow and ẋ = Ax is called a hyperbolic linear system.

Definition 3.2. A subspace E ⊂ R
n is said to be invariant with respect to the flow eAt :

R
n → R

n if eAtE ⊂ E for all t ∈ R.

The following is a key technical lemma that will be use through out this work.

Lemma 3.1. Let A ∈ R
n×n. Then

R
n = Es ⊕ Eu ⊕ Ec

where Es, Eu and Ec are the stable, unstable and center subspaces of the linear system,

respectively; furthermore, Es, Eu and Ec are invariant with respect to the flow eAt respec-

tively.
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Definition 3.3. Let E be an open subset of R
n and let f ∈ C1(E), i.e., f is a continuous

differentiable function defined on E. For x0 ∈ E, let φ (t, x0) be the solution of the initial

value problem

ẋ = f(x), x(0) = x
0

defined on its maximal interval of existence I(x0). Then for t ∈ I(x0), the mapping

φt : E → E defined by φt(x0) = φ(t, x0) is called the flow of the differential equation.

Definition 3.4. For any x0 ∈ R
n, let φt(x0) be the flow of the differential equation through

x0. The local stable set S and the local unstable set W of x0 corresponding to a neighbor-

hood V of x0 are defined by

S = S (0) = {x0 ∈ R
n : φt(x0) ∈ V, t ≥ 0, and φt(x0) → 0 as t → ∞}

W = W (0) = {x0 ∈ R
n : φt(x0) ∈ V, t ≤ 0, and φt(x0) → 0 as t → −∞} .

These local sets are submanifolds of R
n in a sufficiently small neighborhood V of x0.

Now we give the theorems of this section.

Theorem 3.2 (The Local Stable-Unstable Manifold Theorem [9, 21]). Let E be an open

subset of R
n containing the origin, let f ∈ C1(E), and let φt be the flow of the nonlinear

system ẋ = f(x). Suppose that f(0) = 0 and that Df(0) (the Jacobian matrix) has k

eigenvalues with negative real part and n−k eigenvalues with positive real part. Then there

exists a k-dimensional differentiable manifold S (stable manifold) tangent to the stable

subspace ES of the linear system ẋ = Ax at x0 such that for all t ≥ 0, φt(S) ⊂ S and for

all x0 ∈ S,

lim
t→∞

φt(x0) = 0;

and there exists an n−k dimensional differentiable manifold W (unstable manifold) tangent

to the unstable subspace EW of ẋ = Ax at x0 such that for all t ≤ 0, φt(W ) ⊂ W and for

all x0 ∈ W ,

lim
t→−∞

φt(x0) = 0.

Notice that the manifolds S and W are unique.

Theorem 3.3 (The Center Manifold Theorem [9, 21]). Let E be an open subset of R
n

containing the origin and r ≥ 1, also let f ∈ Cr(E), i.e. f is a continuos differentiable

function on E of order r. Suppose that f(0) = 0 and that Df(0) has k eigenvalues with

negative real part, j eigenvalues with positive real part, and l = n − k − j eigenvalues

with zero real part. Then there exists an l-dimensional center manifold W c(0) of class Cr

tangent to the center subspace Ec of ẋ = Ax at 0 which is invariant under the flow φt of

ẋ = f(x).

In general the center manifold W c(0) is not unique.
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Theorem 3.4 (The Hartman-Grobman Theorem [9, 21]). Let E be an open subset of R
n

containing the origin, let φt be the flow of the nonlinear system ẋ = f(x). Suppose that

f(0) = 0, i.e., the origin is an equilibrium point of the dynamical system; and that the

Jacobian matrix evaluated at the origin, A =Df(0), has no eigenvalue with zero real part.

Then there exists a homeomorphism H of an open set W containing the origin onto an

open set V also containing the origin such that for each x0 ∈ W , there is an open interval

I0 ⊂ R containing zero such that for all x0 ∈ W and t ∈ I0

H◦φt(x0) = eAtH(x
0
) ;

that is, H maps trajectories of the nonlinear system ẋ = f(x) near the origin onto trajec-

tories of ẋ = Ax near the origin and preserves the parametrization.

The following argument show that for any matrix A = U⊤TAU , there exists an home-

omorphism Ĥ = UH such that for an open set W containing the origin onto an open set

V also containing the origin such that for each x0 ∈ W , there is an open interval I0 ⊂ R

containing zero such that for all x0 ∈ W and t ∈ I0

Ĥ ◦ φt(x0) = eTAtĤ(x
0
) ;

the last equality is consequence of the Hartman-Grobman Theorem and the fact UeAt =
eTAtU , i.e., Ĥ maps trajectories of the nonlinear system ẋ = f(x) near the origin onto

trajectories of ẋ = TAx near the origin and preserves the parametrization.

The following definition play a key roll in Physics and in section 5.

Definition 3.5. If G is a group and X is a a set, then a (left) group action of G on X is a

binary function G × X → X , denoted by

(g, x) 7→ g · x

which satisfies the following two axioms:

1. (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X;

2. e · x = x for every x ∈ X (where e denotes the identity element of G).

The set X is called a (left) G-set. The group G is said to act on X (on the left).

The action is faithful (or effective) if for any two different g, h ∈ G there exists an

x ∈ X such that g · x 6= h · x; or equivalently, if for any g 6= e in G there exists an x ∈ X

such that g · x 6= x.

The action is free or semiregular if for any two different g, h ∈ G and all x ∈ X we

have g · x 6= h · x; or equivalently, if g · x = x for some x implies g = e.

For every x ∈ X , we define the stabilizer subgroup of x (also called the isotropy group

or little group) as the set of all elements in G that fix x:

Gx = {g ∈ G : g · x = x}

This is a subgroup of G, though typically not a normal one. The action of G on X is free if

and only if all stabilizers are trivial.
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4 New mathematical tools

In the present section, we show a simple extensions of the Local Stable-Unstable Manifold

Theorem and the Center Manifold Theorem, using the tools presented in section 2 and

section 3. These extensions are tools that will be used in section 5, where we will present

the results on preservation of synchronization in networks.

The following Proposition is a simple extension of the Local Stable-Unstable Manifold

Theorem for the action of the group ΛU on the matrix A and the vector field f(x), where

A = UTAU⊤ with TA an upper triangular matrix and U⊤U = U⊤ = I .

Proposition 4.1. Let E be an open subset of R
n containing the origin, let f ∈ C1(E), and

let φt be the flow of the nonlinear system ẋ = f(x) = Ax + g(x). Suppose that f(0) = 0
and that A =Df(0) has k eigenvalues with negative real part and n − k eigenvalues with

positive real part, i.e., the origin is an hyperbolic fixed point. Then for each matrix M ∈ΛU

there exists a k-dimensional differentiable manifold SM tangent to the stable subspace ES
M

of the linear system ẋ = MAx at 0 such that for all t ≥ 0, φM,t(SM ) ⊂ SM and for all

x0 ∈ SM ,

lim
t→∞

φM,t(x0) = 0,

where φM,t be the flow of the nonlinear system ẋ = MAx + g(x); and there exists an

n − k dimensional differentiable manifold WM tangent to the unstable subspace EW
M of

ẋ = MAx at 0 such that for all t ≤ 0, φM,t(WM ) ⊂ WM and for all x0 ∈ WM ,

lim
t→−∞

φM,t(x0) = 0.

An interesting property is that Proposition 4.1 is valid for each g ∈ C1(E) such that

ẋ =f(x) = Ax+g(x) and

‖g(x)‖
2

‖x‖
2

→ 0 as ‖x‖
2
→ 0.

In consequence, the set of matrices ΛU generates the action of the group ΛU on the set

of the hyperbolic nonlinear systems (formally on the set of the hyperbolic vector fields

f ∈ C1(E)) ẋ =f(x) = Ax+g(x) with g ∈ C1(E) and

A ∈ ΩU ≡
{

P ∈ R
n×n : P = U⊤TP U with TP any upper triangular matrix

}

satisfying the last condition, where U is a fixed unitary matrix, this action is faithful and

free. The former action is generated by the action of the group ΛU on the set ΩU . The first

action preserves hyperbolic nonlinear systems and dimension of the stable and unstable

manifolds, i.e, an hyperbolic nonlinear systems (ẋ = Ax+g(x)) is mapped in a hyperbolic

nonlinear systems (ẋ = MAx+g(x)), and dim S = dimSM and dimW = dim WM .

Proof. Consider a matrix A with the decomposition A = U⊤TAU where TA is an upper

triangular matrix and U is an unitary n by n matrix, by Lemma 2.1 this decomposition
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always exists, and the decomposition M = U⊤TMU ∈ΛU . Then MA = U⊤TMTAU and

the eigenvalues of the matrix MA are the product of the eigenvalues of the matrices M

and A, respectively. Since each matrix M ∈ΛU has all diagonal elements strictly positive,

then the matrix MA has k eigenvalues with negative real part and n − k eigenvalues with

positive real part. Therefore, the result is a consequence of the Stable-Unstable Manifold

Theorem.

Notice that given an particular nonlinear system, the stable and unstable manifolds S

and W are unique, then for each matrix M ∈ΛU there exist an unique pair of manifolds

(SM , WM ) in such way that it is possible to define a pair of functions in the following form

Θ : ΛU × ManS → ManS

Θ(M, S) = SM

Φ : ΛU × ManW → ManW

Φ(M, W ) = WM

where ManS is the set of stable manifolds and ManW is the set of unstable manifolds for

autonomous nonlinear systems.

Notice that if A =Df(0) is an stable matrix, i.e., A has all the n eigenvalues with neg-

ative real part, then the origin of the nonlinear system ẋ = MAx+ĝ(x) is asymptotically

stable; and if A =Df(0) is an unstable matrix, i.e., A has n − k (with n > k) eigenvalues

with positive real part, then the origin of the nonlinear system ẋ = MAx+ĝ(x) is unstable.

As an extension of the local Stable-Unstable Manifold Theorem in terms of the Kro-

necker product of matrices in ΛN and the matrix A of the vector field f(x) we present the

following Proposition.

Proposition 4.2.

1. Let E be an open subset of R
n containing the origin, let f ∈ C1(E), and let φt

be the flow of the nonlinear system ẋ = f(x) = Ax + g(x). Suppose that f(0) = 0
and that A =Df(0) has k eigenvalues with negative real part and n− k eigenvalues

with positive real part, i.e., the origin is a hyperbolic fixed point. Now take a fixed

continuously differentiable function

F : C1(E) → C1(E)

such that F (g) = ĝ where ĝ : E ⊂ R
mn → R

mn is a fixed continuously differentiable

function with domain all C1(E); moreover ĝ ∈ C1(E) with E an open subset of R
n

containing the origin such that

‖ĝ(x)‖
2

‖x‖
2

→ 0 as ‖x‖
2
→ 0.

Then for each matrix M ∈ΛN of m × m, there exists a mk-dimensional differen-

tiable manifold SM⊗A tangent to the stable subspace ES
M⊗A of the linear system
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ẋ = (M ⊗ A)x at 0 such that for all t ≥ 0, φM⊗A,t(SM⊗A) ⊂ SM⊗A and for all

x0 ∈ SM⊗A,

lim
t→∞

φM⊗A,t(x0) = 0,

where φM⊗A,t be the flow of the nonlinear system ẋ = (M ⊗ A)x+ĝ(x); and

there exists an m (n − k) dimensional differentiable manifold WM⊗A tangent to

the unstable subspace EW
M⊗A of ẋ = (M ⊗ A)x at 0 such that for all t ≤ 0,

φM⊗A,t(WM⊗A) ⊂ WM⊗A and for all x0 ∈ WM⊗A,

lim
t→−∞

φM⊗A,t(x0) = 0;

2. Also, there exists an function of the group ΛN and the set of all the autonomous

hyperbolic nonlinear systems of dimension n (hyperbolic vector fields of dimension

n) denoted by Γn, to the set Γmn of all the autonomous hyperbolic nonlinear systems

of dimension mn (hyperbolic vector fields of dimension mn), this function (which is

similar to an action of the group ΛN on the set Γn) is defined as follows

ϑ : ΛN × Γn → Γmn

ϑ(M, Ax + g(x)) = (M ⊗ A)x+ĝ(x)

and the new nonlinear system is

ẋ =ϑ(M, Ax + g(x))

ẋ = (M ⊗ A)x+ĝ(x).

which satisfies the following two axioms:

(a) (gh) · z = g • (h · z) for all g, h ∈ ΛN and z ∈ Γn;

(b) For every z ∈ Γn there exists an unique ẑ ∈ Γmn such that e · z = ẑ and

h • ẑ = h · z (e denotes the identity element of ΛN , i.e., e is the identity matrix

Im of m × m).

Where z is associated with Ax + g(x) (denoted by z ⊜ Ax + g(x)); h · z means

(Mh⊗A)x+ĝ(x) (denoted by h · z ⊜ (Mh⊗A) x+ĝ(x)); gh is associated with the

usual product of matrices MgMh, i.e., gh ⊜ MgMh and e·z means (Im⊗A)x+ĝ(x),
i.e., (e · z ⊜ (Im⊗A) x+ĝ(x)), and g • (h · z) means(Mg ⊗ In) (Mh ⊗ A)x+ĝ(x)
(denoted by g • (h · z) ⊜ (Mg ⊗ In) (Mh ⊗ A) x+ĝ(x)).

Proof.

1. Consider a matrix A with eigenvalues λi for i = 1, 2, . . . , n, and the matrix M with

eigenvalues µj for j = 1, 2, . . . , m. Then the eigenvalues of the matrix M ⊗ A are

the eigenvalues are the mn numbers λiµj , and taking account that µj > 0 for each

j = 1, 2, . . . , m. Therefore, the matrix M ⊗ A has mk eigenvalues with negative

real part and m (n − k) eigenvalues with positive real part. Now, the result is a

consequence of the Stable-Unstable Manifold Theorem.
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2. The function ϑ : ΛN × Γn → Γmn is well defined, since F : C1(E) → C1(E)
is a fixed function, then given g(x), the vector field ĝ(x) is unique, and for a fixed

matrix Mh ∈ ΛN , then Mh⊗ : Rn×n → R
mn×mn is a fixed function and the matrix

Mh⊗A is unique.

Axiom (a): Since ΛN is a multiplicative group if Mg, Mh ∈ ΛN , then MgMh ∈ ΛN .

Now, by Lemma 2.2, we have that for all g, h ∈ ΛN and z ∈ Γn

(gh) · z ⊜ (MgMh⊗A)x+ĝ(x) =

(Mg ⊗ In) (Mh ⊗ A)x+ĝ(x) ⊜ g • (h · z).

Axiom (b): For every z ∈ Γn there exists an unique ẑ ∈ Γmn such that e · z ⊜

(Im ⊗ A)x+ĝ(x) =ẑ, then by the Lemma 2.2

h • ẑ ⊜(Mh ⊗ In) (Im ⊗ A)x+ĝ(x) =

(Mh⊗A) x+ĝ(x) ⊜ h · z.

Notice that if A =Df(0) is stable matrix, i.e., A has all the n eigenvalues with negative

real part, then the origin of the nonlinear system ẋ = (M ⊗ A) x+ĝ(x) is asymptotically

stable; and if A =Df(0) is unstable matrix, i.e., A has n − k (n > k) eigenvalues with

positive real part, then the origin of the nonlinear system ẋ = (M ⊗ A)x+ĝ(x) is unstable.

The following Proposition is an extension of the Center Manifold Theorem, similar to

Proposition 4.1 and Proposition 4.2.

Proposition 4.3. Let f ∈ Cr(E) where E is an open subset of R
n containing the origin

and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real

part, j eigenvalues with positive real part, and l = n − k − j eigenvalues with zero real

part. Then

1. For each matrix M ∈ΛU there exists a m-dimensional differentiable center man-

ifold W c
M (0) of class Cr tangent to the center subspace Ec

M of the linear sys-

tem ẋ = MAx at 0 which is invariant under the flow φM,t of the nonlinear system

ẋ = MAx + g(x).

2. If taken a fixed continuously differentiable function

F̂ : Cr(E) → Cr(E)

such that F (g) = ĝ where ĝ : E ⊂ R
mn → R

mn is a fixed continuously differentiable

function with domain all Cr(E); moreover ĝ ∈ Cr(E) with E an open subset of R
n

containing the origin such that

‖ĝ(x)‖
2

‖x‖
2

→ 0 as ‖x‖
2
→ 0.
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Then for each matrix M ∈ΛN of m×m, there exists a ml-dimensional differentiable

center manifold W c
M⊗A(0) tangent to the center subspace ES

M⊗A of the linear system

ẋ = (M ⊗ A)x at 0 which is invariant under the flow φM⊗A,t of the nonlinear

system ẋ = (M ⊗ A)x + ĝ(x).

Proof. The proof is similar to proof of Proposition 4.1 and Proposition 4.2, and we make

use of the Center Manifold Theorem.

Also, there exists a similar function ϑ̂ to ϑ which satisfies the axiom (a) and axiom (b)

of Proposition 4.2. However, in this case there does not exist similar functions to Θ and Φ,

due to that in general a center manifold is not unique.

Notice that in this case, if the matrix A has l = n−k−j 6= 0 eigenvalues with zero real

part, then the origin of the nonlinear systems ẋ = MAx+ĝ(x) and ẋ = (M ⊗ A)x+ĝ(x)
are not asymptotically stable.

Propositions 4.1, 4.2, 4.3 generalize Proposition 3 in [13], and give new tools for preser-

vation of basic properties of dynamical systems, some of these properties are the stability

and instability.

5 Preservation of synchronization in networks

Now, we will present that it is possible to preserve synchronization even thought the dimen-

sion of the system changes by the action of a class of transformation on the linear part of a

chaotic nonlinear dynamical system.

Consider the following two n-dimensional chaotic systems:

ẋ = Ax + g(x)

ẏ = Ay + f(y) + u(t)

where A ∈ Rn×n is a constant matrix, f, g : Rn → Rn are continuous nonlinear functions

and u ∈ Rn is the control input. The problem of synchronization considered in this section

is the complete-state exact synchronization, that is, the master system and the slave system

are synchronized by designing an appropriate nonlinear state feedback control u(t) which

is attached to the slave system such that:

lim
t→∞

‖x(t) − y(t)‖ → 0

where ‖·‖ is the Euclidean norm of a vector.

Considering the error state vector e = y−x ∈ Rn, f(y)− g(x) = L(x, y) and an error

dynamics equation:

ė = Ae + L(x, y) + u(t).

Based in the active control approach [5], to eliminate the nonlinear part of the error dy-

namics, and choosing u(t) = Bv(t) − L(x, y), where B is a constant gain vector which is

selected such that (A, B) be controllable, we obtain:

ė = Ae + Bv(t).
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Notice that the original synchronization problem is equivalent to the problem of stabilizing

the zero-input solution of the last system by a suitable choice of the state feedback control.

Since the pair (A, B) is controllable one such suitable choice for state feedback is a

linear-quadratic state-feedback regulator [2], which minimizes the quadratic cost function

J(u(t)) =

∫ ∞

0

(
e(t)⊤Qe(t) + v(t)⊤Rv(t)

)
dt

where Q and R are positive semi-definite and a positive definite weighting matrices, re-

spectively. The state-feedback law is given by v = −Ke with K = R−1B⊤S and S the

solution to the Riccati equation

A⊤S + SA − SBR−1B⊤ + Q = 0.

This state-feedback law renders the error equation to ė = (A − BK)e, with (A − BK) a

Hurwitz matrix1. The linear quadratic regulator (LQR) is a well-known design technique

that provides practical feedback gains [2]. An interesting property of (LQR) is robustness.

Now consider T ∈ Rm×m be a matrix with strictly positive eigenvalues, and suppose

that the following two nm-dimensional systems are chaotic:

ẋ = (T ⊗ A) x + ĝ(x)

ẏ = (T ⊗ A) y + f̂(y) + û(t)

for some f̂ , ĝ : Rnm → Rnm continuous nonlinear functions and û ∈ Rnm is the control

input. Then based on Proposition 4.2, and the former procedure, we have that û(t) =
θ̂(t) − L̂(x, y) stabilizes the zero solution of the error dynamics system, where θ̂(t) =
− (BK ⊗ T ) e, i.e., the resultant system

ė = (T ⊗ A) e + θ̂(t)

ė = (T ⊗ A − T ⊗ BK) e

is asymptotically stable. Notice that using Lemma 2.2 and K = −R−1B⊤S, we obtain

that:

ė = (T ⊗ (A + BK)) e

ė =
(
T ⊗

(
A − BR−1B⊤S

))
e

The original control u(t) = BKe − L(x, y) is preserved in its linear part by the Kroneker

product T⊗(·) and the new control is given by û(t) = − (T ⊗ BK) e−L̂(x, y). Therefore,

we can interpreted the last procedure as one in which the controller u(t) that achieves the

synchronization in the two original systems is preserved by the transformation T⊗(·) so that

1A Hurwitz matrix is a matrix for which all its eigenvalues are such that their real part is strictly less than

zero
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û(t) achives the synchronization in the two resultant systems after of the transformation. A

similar procedure is possible if we consider the transformation (·) ⊗ T .

In general, under the transformations (A, g) → (MA,g) or (A, g) → (M ⊗ A,g), and

under the hypothesis of the existence of a constant state feedback U = −Kx which achieves

synchronization of the original chaotic systems, and also that the transformed systems are

chaotic, then synchronization can be preserved.

The main contribution in this section does not deal with a better synchronization

methodology, rather it deals with the fact that synchronization is preserved when the un-

derlying chaotic dynamical system changes from a lower dimension to a higher dimension.

This issue is important for the case of networking systems. In this section, the transformed

system can be interpreted as a network in which there has been an increase in the number

of nodes.

6 Synchronization of transformed Chua’s circuit

In this section using a known chaotic system as a benchmark for the result shown in Sec-

tion 5 some simulations are presented.

6.1 Synchronization of modified Chua’s circuit

The known chaotic system which we will use to show the posibility to preserve synchro-

nization is the modified Chua’s circuit described in [16]:

ẋ1 = p

(
x2 −

(
2x3

1
− x1

)

7

)

ẋ2 = x1 − x2 + x3

ẋ3 = −qx2

which has a chaotic attractor. In order to observe synchronization behavior in [16], they

have two modified Chua’s circuits arrange as a Master/Slave configuration. The Master and

the Slave systems are almost identical, the only difference is that the Slave systems includes

an extra term which is used for the purpose of synchronization with the Master system. The

initial condition for the two systems are different. The two modified Chua’s circuits are

described, respectively, by the following equations.

The master system is given by

ẋ1 = p

(
x2 −

2x3
1
− x1

7

)

ẋ2 = x1 − x2 + x3

ẋ3 = −qx2
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Figure 1: Modified Chua’s circuit (Master), Initial conditions x =
[

0.02 0.05 0.04
]
.

and the slave system is a copy of the master system with a control function u(t) to be

determined in order to synchronize the two systems.

ẏ1 = p

(
y2 −

2y3
1
− y1

7

)
+ u1

ẏ2 = y1 − y2 + y3 + u2

ẏ3 = −qy2 + u3

Considering the errors e1 = x1 − y1, e2 = x2 − y2, e3 = x3 − y3, then the error

dynamics can be written as:

ė1 =
p

7
e1 + pe2 −

2p

7

(
y3

1 − x3

1

)
+ u1(t)

ė2 = e1 − e2 + e3 + u2(t)

ėz = −qe2 + u3(t)

Introducing the matrices:

A =




p
7

p 0
1 −1 1
0 −q 0



 , L(x, y) =




−

2p(y3

1
−x2

3)
7

0
0



 , u =




u1(t)
u2(t)
u3(t)





and the vector B is selected such that (A, B) is controllable: B =
(

0 1 1
)T

. Now

the LQR controller is obtained by using weighting matrices Q = I and R = B⊤B

and parameter values p = 10 and q = 100

7
. The state feedback matrix is given by

K =
(

3.8676 5.1415 1.2932
)
.

In Figure 1 and Figure 2 the trajectories for the solution of the master system and slave

system are shown. In Figure 3 the absolute value for the error between the master and slave
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Figure 2: Modified Chua’s circuit (Slave), Initial conditions x =
[

0.2 0.5 0.4
]
.
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Figure 3: Magnitude of the error |e| = |y − x| between the Master and the slave systems.
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Figure 4: Transformation of the first kind for the modified Chua’s model (Master). States

x1, x2 and x3 with initial conditions -0.2, -0.5, -0.4, respectively.

systems are shown in a semi-logarithmic plot to emphasize the fact that the error converges

to zero and therefore the synchronization between the Master and Slave systems.

6.2 Transformation of the first kind

For the transformed systems of the first kind we have the master and slave systems as

ẋ = (T ⊗ A)x +
[
−

2x3

1

7
−

2x3

2

7
−

2x3

3

7
−

2x3

4

7
0 0

]⊤
,

ẏ = (T ⊗ A)y +
[
−

2y3

1

7
−

2y3

2

7
−

2y3

3

7
−

2y3

4

7
0 0

]⊤
+ u

Considering the error vector e = y − x, then the error dynamics can be written as:

ė = (T ⊗ A)e + L(x, y) + u

with u = −M(x, y) + v and v = −(BK ⊗ T )e and

A =




p
7

p 0
1 −1 1
0 −q 0



 , T =

[
2 1
0 1

]
,

L(x, y) =
[

l1 l2 l3 l4 0 0
]⊤

, li = −
2
(
y3

i − x3

i

)

7

B =
[

0 1 1
]⊤

We used K the same as in subsection 6.1.
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Figure 5: Transformation of the first kind for the modified Chua’s model (Master). States

x4, x5 and x6 with initial conditions -0.2, -0.5, -0.4, respectively.
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Figure 6: Transformation of the first kind for the modified Chua’s model (Slave). States y1,

y2 and y3 with initial conditions 0.002, 0.005, 0.004, respectively.
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Figure 7: Transformation of the first kind for the modified Chua’s model (Slave). States y4,

y5 and y6 with initial conditions 0.002, 0.005, 0.004, respectively.
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Figure 8: Magnitude of the error |e| = |y − x| between the Master and the slave systems.
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In Figure 4 and Figure 5 the trajectories for the master system are shown; in Figure 6

and Figure 7 the trajectories for the slave system are presented. In Figure 8 the absolute

value for the error between the master and slave systems are shown in a semi-logarithmic

plot to emphasize the fact that the error converges to zero.

Notice that the transformed systems are of higher dimension than the original modified

Chua’s circuit model, and also the transform systems are chaotic. It is important to mention

that the nonlinear part was chosen such that the transformed systems are chaotic, since the

transformation is not applied to the higher order terms of the vector field.

The same transformation that preserves stability also preserves the controller and there-

fore synchronization for the transformed modified Chua’s circuit.

6.3 Transformation second kind

For the transformed systems of the second kind we have the master and slave systems as

ẋ = (M1M2 ⊗ A)x +
[
−

2x3

1

7
−

2x3

2

7
−

2x3

3

7
−

2x3

4

7
−

2x3

5

7
−

2x3

6

7

]⊤
,

ẏ = (M1M2 ⊗ A)y +
[
−

2y3

1

7
−

2y3

2

7
−

2y3

3

7
−

2y3

4

7
−

2y3

5

7
−

2y3

6

7

]⊤
+ u

Considering the error vector e = y − x, then the error dynamics can be written as:

ė = (M1M2 ⊗ A)e + L(x, y) + u

with u = −M(x, y) + v and v = −(M1M2 ⊗ BK)e and

A =




p
7

p 0
1 −1 1
0 −q 0



 , M1 =

[
3.1532 −3.4839
1.5161 −1.4532

]
,

M2 =

[
2.2764 1.1708
0.17082 2.7236

]
,

L(x, y) =
[

l1 l2 l3 l4 l5 l6
]⊤

, li = −
2
(
y3

i − x3

i

)

7

B =
[

0 1 1
]⊤

notice that M1 and M2 are equivalent to upper triangular matrices

T1 =

[
1 −0.5
0 0.7

]
, T2 =

[
3 1
0 2

]
,

by the similarity transformation

U =

[
0.85065 −0.52573
0.52573 0.85065

]
.
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Figure 9: Transformation of the second kind for the modified Chua’s model (Master). States

x1, x2 and x3 with initial conditions 2, 5, 4, respectively.
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Figure 10: Transformation of the second kind for the modified Chua’s model (Master).

States x4, x5 and x6 with initial conditions 2, 5, 4, respectively.
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Figure 11: Transformation of the second kind for the modified Chua’s model (Slave). States

y1, y2 and y3 with initial conditions 0.2, 0.5, 0.4, respectively.
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Figure 12: Transformation of the second kind for the modified Chua’s model (Slave). States

y4, y5 and y6 with initial conditions 0.2, 0.5, 0.4, respectively.
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Figure 13: Magnitude of the error |e| = |y − x| between the Master and the slave systems.

We used K the same as in subsection 6.1.

In Figure 9 and Figure 10 the trajectories for the master system are shown; in Figure 11

and Figure 12 the trajectories for the slave system are presented. In Figure 13 the absolute

value for the error between the master and slave systems are shown in a semi-logarithmic

plot to emphasize the fact that the error converges to zero.

The resulting trajectories seem to preserved a region of attraction, nevertheless at this

point it is not clear if chaos is preserved or not. As a future work it would be important to

characterize which kind of mechanism preserve the chaotic behavior of a system even in

the event of a a change on the dimension of the system.

7 Conclusion

The preservation of the stable behavior in chaotic synchronization is studied from an exten-

sion of the local stable-unstable manifold theorem and an extension of the center manifold

theorem based in the preservation of the signature of the linear part of the vector fields in

nonlinear dynamical systems. Furthermore, under the hypothesis that given a chaotic sys-

tem, its transformed version is also a chaotic system, it is shown that a scheme consisting

of a master/slave pair for which a constant state feedback where the controller gain for the

slave system is obtained using a linear-quadratic regulator for which the chaotic synchro-

nization is achieved preserving the synchronization even after the master/slave/controller

is transformed, notice that the underlying chaotic dynamical system changes from a lower

dimension. It is an attempt to study how a given collective dynamics can be preserved

when important changes occur in the dynamical system. This issue is important for the

case of networking systems. We know that most of real world networks are not stationary,

in the sense that they are growing, with new nodes continuously being added to the graph.
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This is related to the increase in dimension of the involved network. Therefore it comes

out a natural question on how these networks can preserve a given collective dynamics or

functioning, while the process of their growth is taking place in time. The transformed sys-

tem can be interpreted as a network in which there has been an increase in the number of

nodes. As an example a modified Chua’s circuits is used to show the effectiveness of the

proposed method. The results can be extended to other technique for the feedback design,

e.g., adaptive, sliding mode, etc.
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