Measurement and interpretation of differential cross sections for Higgs boson production at $\sqrt{s} = 13$ TeV

The CMS Collaboration *

CERN, Switzerland

1. Introduction

The Higgs boson (H), whose existence is predicted by the Brout–Englert–Higgs mechanism [1–3], is responsible for electroweak symmetry breaking in the standard model (SM). Since the discovery [4–6] of a particle compatible with the SM Higgs boson at the CERN LHC, extensive effort has been dedicated to the measurement of its properties and couplings.

In this analysis we measure the inclusive and differential cross sections for the production of Higgs bosons. Compared with inclusive measurements [7–9], differential distributions provide extended information on the Higgs boson couplings, which can be extracted by fitting parametrized spectra to a combination of differential cross sections. When the Higgs boson couplings to quarks and to other bosons are varied with respect to their SM values, distortions of the predicted differential cross section spectra appear, which are particularly pronounced in the transverse momentum (p_T) distribution.

A precise measurement of the Higgs boson couplings represents an important test of the SM, as the couplings are sensitive to several SM extensions [10,11]. While the couplings to the top (y_t) and bottom (y_b) quarks are known with high precision, there is still a relatively large uncertainty in the measurement of the couplings to lighter quarks such as the coupling to the charm quark (y_c). A proof-of-concept study determining limits on the modification of the SM Higgs boson coupling (y_c^{SM}) to the charm quark, $\kappa_c = y_c/y_c^{\text{SM}}$, from the Higgs boson transverse momentum (p_T^H) distribution was performed in Ref. [12]. Reinterpreting the ATLAS Collaboration measurements in Ref. [13], this analysis yields the overall bounds $\kappa_c \in [-16, 18]$ at 95% confidence level (CL). Using the same data set, a reinterpretation of a search by the ATLAS Collaboration for the $H \rightarrow J/\psi \gamma$ channel [14] yields $|\kappa_c| < 429$ at 95% CL [15]. More recently, studies from the ATLAS Collaboration [16, 17], using data collected at $\sqrt{s} = 13$ TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$, yield an observed upper limit on the $H \rightarrow J/\psi$ branching fraction of 3.5×10^{-4} at 95% CL that is an improvement of about a factor two with respect to the result obtained in Ref. [14], and an observed upper limit on the product of the production cross section and branching fraction $\sigma(pp \rightarrow ZH)B(H \rightarrow c\bar{c})$ of 110 times the SM value at 95% CL.

Both the ATLAS and CMS Collaborations have reported measurements of differential Higgs boson production cross sections at $\sqrt{s} = 8$ and 13 TeV [18–28]. The CMS Collaboration has measured differential Higgs boson production cross sections in the $H \rightarrow \gamma \gamma$ [25] and $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ ($\ell = e$ or μ) [27] decay channels using data recorded by the CMS experiment in 2016 at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. We report...
measurements of differential cross sections obtained by combining these results. Additionally, we include a search for the Higgs boson produced with large \(p_T \) and decaying to a bottom quark-antiquark (b\bar{b}) pair [29] in the combination of the \(p_T^H \) spectrum. The differential cross sections for the following observables are combined: \(p_T^H \), the Higgs boson rapidity \(|y_H| \), the number of hadronic jets \(N_{\text{jets}} \), and the transverse momentum of the leading hadronic jet \(\Delta p_T \).

We interpret the \(p_T^H \) spectrum in terms of Higgs boson couplings. To take into account as many degrees of freedom as possible, multiple couplings are varied simultaneously. We present results obtained by varying simultaneously (i) the modifier of the Higgs boson coupling to the charm quark \(\kappa_c \) and the bottom quark \(\kappa_b \), (ii) the modifier of the Higgs boson coupling to the top quark \(\kappa_t \) and the coefficient \(c_g \) of the anomalous direct coupling to the gluon in the heavy top quark mass limit, and (iii) \(\kappa_t \) and \(\kappa_b \).

The SM production cross sections and decay rates depend on the Higgs boson mass \(m_H \). We assume a Higgs boson mass of 125.09 GeV for all measurements in this paper, based on the combined ATLAS and CMS measurement using proton-proton collision data collected in 2011 and 2012 [8].

2. Theoretical predictions

Differential cross sections may be used to constrain model parameters. In the case of Higgs boson production via gluon fusion, the dominant production mode at the LHC, finite quark mass effects and moderate variations to Higgs boson couplings may manifest themselves through distortions of the \(p_T^H \) spectrum. We interpret the \(p_T^H \) spectrum for gluon fusion in terms of modifications of the couplings of the Higgs boson using two models: one tailored to heavy quarks and the other considering the effect of lighter quarks in the gluon fusion loop [12]. The cross section for Higgs boson production in association with top quarks is taken to scale quadratically with \(\kappa_t \). The production processes are taken to be independent of these couplings. The coupling modifiers are described in the context of the \(\kappa \)-framework [32]:

\[
\kappa_i = \frac{y_i}{y_i^{\text{SM}}},
\]

(1)

where \(y_i \) is the Higgs boson coupling to particle \(i \). The SM value of any \(\kappa_i \) is equal to 1.

Recent developments in \(p_T \) resummation procedures have allowed more accurate calculations of the \(p_T^H \) spectrum when including the effects of lighter quarks on Higgs boson production via gluon fusion [33–36]. The \(p_T^H \) spectrum for gluon fusion has been calculated for simultaneous variations of \(\kappa_c \) and \(\kappa_b \) [12], taking into account the interference of the top quark loop with that from the bottom and charm quarks in the gluon fusion production loop, providing a novel approach to constrain these couplings via the \(p_T^H \) spectrum. We parameterize the variations computed in Ref. [12] with a quadratic polynomial for each bin of the \(p_T^H \) spectrum. The Higgs boson coupling to the top quark is fixed to its SM value in this model. The calculations from Ref. [12] are given up to the scale of the Higgs boson mass, and thus the \(H \rightarrow b\bar{b} \) channel (for which the lower limit of the \(p_T^H \) spectrum is 350 GeV) is not used as input for the results obtained with this model.

A second model producing simultaneous variations of \(\kappa_c \), \(c_g \), and \(\kappa_b \) by adding dimension-6 operators to the SM Lagrangian has been built in Refs. [30,31]. This study employs an analytic resummation performed up to next-to-next-to-leading-logarithmic (NNLL) order in order to obtain the \(p_T^H \) spectrum at next-to-next-to-leading order+NNLL (NNLO+NNLL) accuracy. The dimension-6 operator whose coefficient is \(c_g \) yields a direct coupling of the Higgs field to the gluon field with the same underlying tensor structure as in the heavy-top mass limit. In the SM, the value of \(c_g \) equals 0. The introduction of \(c_g \) in the effective Lagrangian is given in Ref. [31] and the inclusive cross section is given by \(\sigma \simeq 12c_g + \kappa^2 \sigma^{\text{SM}} \). Two other operators are included in the Lagrangian to describe modifications of the top and bottom Yukawa couplings with coefficients \(\kappa_t \) and \(\kappa_b \), respectively. While the model allows simultaneous variation of all three coupling modifiers, we consider only simultaneous variations of \(\kappa_t \) and \(c_g \), and of \(\kappa_t \) and \(\kappa_b \). The precomputed spectra from Ref. [30] are used as input and parametrized using a quadratic polynomial.

3. The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity \(|\eta| \) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [37].

4. Inputs to the combined analysis

For all the analyses used as input to the combination (\(H \rightarrow \gamma\gamma \) [25], \(H \rightarrow ZZ^{\ast} \rightarrow 4\ell \) [27], and \(H \rightarrow b\bar{b} \) [29]), the data set corresponds to an integrated luminosity of 35.9 fb\(^{-1}\) recorded by the CMS experiment in 2016. The \(H \rightarrow b\bar{b} \) decay channel is only included in the combination of the \(p_T^H \) spectra, improving the measurements at the higher end of the distribution where the data from the \(H \rightarrow \gamma\gamma \) and \(H \rightarrow ZZ \) decay channels are limited. All analyses provide the parametrization of the folding matrix \(M_{ij} \) (which is the probability for an event in generator-level bin \(i \) to be reconstructed in bin \(j \) and category \(k \)) in terms of a common generator-level binning, that is used for the combined spectra. Given the limited statistical precision in the individual channels, the results of the \(H \rightarrow ZZ \) and \(H \rightarrow b\bar{b} \) channels individually are reported for a coarser binning, which is provided in Tables 1–4 for each of the observables. This binning coincides with the binning at the reconstruction level.

The SM prediction for the differential cross sections is simulated with MadGraph5_aMC@NLO v2.2.2 [38] for each of the four dominant Higgs boson production modes: gluon-gluon fusion (ggH), vector boson fusion, associated production with a W/Z boson, and associated production with a top quark-antiquark pair. A contribution from Higgs boson production in association with bottom quarks is not simulated, but included assuming its acceptance is equal to that from Higgs boson production via gluon fusion. The matrix element calculation includes the emission of up to two additional partons and is performed at NLO accuracy in perturbative quantum chromodynamics (QCD). Events are interfaced to \(\text{R} \) 8.205 [39] for parton showering and hadronization with the CUETP8M1 [40] underlying event tune. The matrix element calculation is matched to the parton shower following the prescription in Ref. [41]. A weight depending on \(p_T^H \) and \(N_{\text{jets}} \) is applied to simulated ggH events to match the predictions from the winter program [42,43], as discussed in Ref. [9]. The set of parton distribution functions used in all simulations is NNPDF3.0 [44]. The hadronic jets are clustered from the particle-flow candidates [45].
in the case of data and simulation, and from stable particles excluding neutrinos in the case of generated events, using the anti-k_{T} clustering algorithm [46] with a distance parameter of 0.4. The measurements are reported in terms of kinematic observables defined before the decay of the Higgs boson, i.e., at the generator level.

Each of the analyses used as input to the combination corresponds to a different fiducial phase space definition and applies a different event categorization. In the case of the H → γγ analysis, the fiducial phase space is defined by requiring the ratio of the leading (subleading) photon p_{T} to the diphoton mass to be greater than 1/3 (1/4). In addition, for each photon candidate the scalar sum of the generator-level p_{T} of stable particles contained in a cone of radius ΔR = 0.3 around the candidate is required to be less than 10 GeV, where ΔR = \sqrt{(Δη)^2 + (Δφ)^2} is the angular separation between particles and Δφ is the azimuthal angle between two particles in radians. The selected photon pairs are categorized according to their estimated relative invariant mass resolution [25]. In the case of the H → ZZ analysis, the 4-lepton mass is required to be greater than 70 GeV, the leading Z boson candidate invariant mass must be greater than 400 GeV, and leptons must be separated in angular space by at least ΔR > 0.02. Furthermore, at least two leptons must each have a p_{T} > 10 GeV and at least one a p_{T} > 20 GeV. The selected events are categorized according to their lepton configuration in the final state (4 electrons, 4 muons, or 2 electrons and 2 muons). In the case of the H → bb analysis, the analysis strategy requires the presence of a single anti-k_{T} jet with a distance parameter of 0.8, p_{T} > 450 GeV, and |η| < 2.5. For this analysis, the data is not unfolded to a fiducial phase space. Soft and wide-angle radiation is removed using the soft-drop grooming algorithm [47,48]. The jet mass after application of the soft-drop algorithm, m_{SD}, peaks close to the Higgs boson mass in the case of signal events. To avoid finite-cone effects and the nonperturbative regime of the m_{SD} calculation, events are selected based on the dimensionless mass scale variable for QCD jets defined as ρ = \log\left(m_{SD}^2/p_{T}^2\right) [47], which relates the jet p_{T} to the jet mass. Events with isolated electrons, muons, or τ leptons with p_{T} > 10 GeV and |η| < 2.5 are vetoed in order to reduce the background from SM electroweak processes, and events with a missing transverse momentum greater than 140 GeV are vetoed in order to reduce the background from top quark-antiquark pair production. Additionally, a selection criterion is applied based on the compatibility of the single anti-k_{T} jet with having a twoprong substructure [49-52]. Events are categorized according to their likelihood of consisting of two b quarks, which is computed using the double-b tagger algorithm [53].

Minor modifications are applied to the individual analyses in Refs. [25,27,29] to provide the inputs used for the combination of differential observables. For H → γγ, an additional bin, p_{T} > 600 GeV, is included in the p_{T} spectrum. For H → ZZ, the binning is modified for multiple kinematic observables to align with the binning of the H → γγ analysis. Furthermore, the branching fractions of the two Z bosons to the various lepton configurations are fixed to their SM values, whereas in Ref. [27] these are allowed to float. For H → bb the signal is split into two p_{T} bins at the generator level: the first with 350 ≤ p_{T} < 600 GeV, where the lower limit has been extended downwards with respect to the individual analysis, and the second an overflow bin with p_{T} ≥ 600 GeV, which aligns with the binning of the other channels. At the reconstruction level two bins are employed, with 450 ≤ p_{T} < 600 and p_{T} ≥ 600 GeV, which is a slight modification with respect to the binning used in Ref. [29]. The redefinition of the reconstructed p_{T} categories necessitates a reevaluation of the background model, which is performed using the same procedure as in the original analysis. For the purpose of the combination in this analysis, the fiducial measurements from the H → γγ and H → ZZ channels are extrapolated to the inclusive phase space [38,42,43].

5. Statistical analysis

The cross sections are extracted through a simultaneous extended maximum likelihood fit to the diphoton mass, four-lepton mass, and m_{SD} distributions in all the analysis categories of the H → γγ, H → ZZ, and H → bb channels, respectively. The number of expected signal events n_{sig} in a given reconstructed kinematic bin i, given analysis category k and given decay channel m is obtained from:

\[n_{i,k}^{\text{sig},m}(\Delta \sigma | \vec{\theta}) = \sum_{j=1}^{n_{\text{bins}}} \Delta \sigma_{j} L(\vec{\theta}) B_{m}M_{ji}^{M_{\text{km}}}(\vec{\theta}), \]

where:

- j is a kinematic bin index at the generator level;
- n_{\text{bins}} is the number of kinematic bins at the generator level, which is the same for all decay channels;
- \Delta \sigma is the set of differential cross sections at the generator level, and L is the integrated luminosity of the samples used in this analysis;
- B_{m} is the branching fraction of the decay channel m. The overall effect of the branching fraction uncertainties on the combined spectra is below 1%, and has been neglected.
- M_{ji}^{M_{\text{km}}} is the folding matrix, which is determined from Monte Carlo simulation; note that the corresponding matrix \hat{M}^{M_{\text{km}}} need not be square; the number of reconstructed bins may be smaller than the number of bins at the generator level; and
- \vec{\theta} is the set of nuisance parameters.

The bin-to-bin migrations are taken into account via the folding matrix, effectively allowing unfolding of the detector effects. Following the prescription in Ref. [54], we find that no regularization of the unfolding procedure is needed.

An extended likelihood function for a single decay channel m is constructed:

Table 1

<table>
<thead>
<tr>
<th>Channel</th>
<th>p_{T} binning (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → γγ</td>
<td>[0, 15] [15, 30] [30, 45] [45, 80] [80, 120] [120, 200] [200, 350] [350, 600] [600, ∞]</td>
</tr>
<tr>
<td>H → ZZ</td>
<td>[0, 15] [15, 30] [30, 80] [80, 200] [120, 200] [200, ∞]</td>
</tr>
<tr>
<td>H → bb</td>
<td>None [350, 600] [600, ∞]</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Channel</th>
<th>N_{sig} binning</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → γγ</td>
<td>0 1 2 3 ≥4</td>
</tr>
<tr>
<td>H → ZZ</td>
<td>0 1 2 ≥3</td>
</tr>
</tbody>
</table>

Table 3
The binning for $|\gamma|_{\mu}$ for the $H \rightarrow \gamma\gamma$ and the $H \rightarrow ZZ$. This binning coincides with the binning of the unfolded cross sections in which the individual results are reported.

Channel	$	\gamma	_{\mu}$ binning			
$H \rightarrow \gamma\gamma$	[0.0, 0.15)	[0.15, 0.30)	[0.30, 0.60)	[0.60, 0.90)	[0.90, 1.20)	[1.20, 2.50)
$H \rightarrow ZZ$	[0.0, 0.15)	[0.15, 0.30)	[0.30, 0.60)	[0.60, 0.90)	[0.90, 1.20)	[1.20, 2.50)

Table 4
The binning for p_T^{μ} for the $H \rightarrow \gamma\gamma$ and the $H \rightarrow ZZ$. This binning coincides with the binning of the unfolded cross sections in which the individual results are reported.

<table>
<thead>
<tr>
<th>Channel</th>
<th>p_T^{μ} binning (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>[0, 30)</td>
</tr>
<tr>
<td>$H \rightarrow ZZ$</td>
<td>[0, 30)</td>
</tr>
</tbody>
</table>

The Higgs boson coupling modifiers are fitted via a largely analogous procedure. In the likelihood function (4), the differential cross sections $\Delta\sigma$ are replaced by parametrizations of theoretical spectra, instead of allowing them to be determined in the fit:

$$\Delta\sigma \rightarrow \Delta\sigma(\kappa_A, \kappa_B).$$

where κ_A and κ_B are the coupling modifiers to be fitted.

6. Systematic uncertainties

The experimental systematic uncertainties from the input analyses are incorporated in the combination as nuisance parameters in the extended likelihood fit and are profiled. Among the decay channels, correlations are taken into account for the systematic uncertainties in the jet energy scale and resolution, and the integrated luminosity. Detailed descriptions of the experimental systematic uncertainties per decay channel can be found in Refs. [25, 27, 29].

The measurement is made for the full phase space rather than limited to a fiducial phase space (as is the case for the original $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ$ analyses). This means that the uncertainties in the acceptances for the individual analyses and in the branching fractions may affect the results. The effect of the acceptance uncertainties per bin on the overall uncertainty, including the effect of the Higgs coupling modifiers on the acceptances, is less than 1% and so this is neglected in the combination. For certain measurements the production cross sections of non-ggH production modes are assumed to be their respective SM value. In these cases, the uncertainty in the inclusive production cross section from non-ggH modes, determined to be about 2.1% [57], has been taken into account as a nuisance parameter.

The theoretical predictions described in Section 2 are subject to theoretical uncertainties from the renormalisation scale μ_R and the factorisation scale μ_F. The standard approach to evaluate the impact of these uncertainties is to compute an envelope of scale variations, and to assign the extrema of the envelope as the uncertainty. To this end, μ_R and μ_F are independently varied between 0.5, 1, and 2 times their nominal value, whereas the fraction $\frac{\mu_F}{\mu_R}$ is constrained not to be less than 0.5 or greater than 2.0. As the theoretical spectra in the $k_t/c_t/k_t$ case and the c_t/k_t case contain a resummation, the uncertainty in the resummation scale Q is also considered, and it is evaluated by varying Q from 0.5 to 2 times its central value (while keeping μ_R and μ_F at their respective central values). The theoretical uncertainties are assigned by applying the minimum and maximum scale variations per bin. The resulting uncertainties for the spectra under variations of k_t, k_t, c_t, c_t, and variations of k_t, c_t, and k_t are shown in Tables 5 and 6, respectively.
Theoretical uncertainties are subject to bin-to-bin correlations. We adopt a procedure that produces a correlation coefficient \(\rho_{ab} \) directly from the individual scale variations:

\[
\rho_{ab} = \frac{\sum_i (\sigma_{a,i} - \sigma_a)(\sigma_{b,i} - \sigma_b)}{\sqrt{\sum_i (\sigma_{a,i} - \sigma_a)^2 \sum_i (\sigma_{b,i} - \sigma_b)^2}}.
\]

where \(\sigma_{a,b,i} \) is the cross section in bin \(a \) (\(b \)) of the \(i \)th scale variation, \(\sigma_{a,b} \) is the mean cross section in bin \(a \) (\(b \)), and \(\rho_{ab} \) is the resulting correlation coefficient between bin \(a \) and \(b \). The correlation structure is characterized by strong correlations among bins at moderate \(p_T^H \) (\(15 \leq p_T^H \leq 600 \) GeV). Only the bins with \(p_T^H < 15 \) and \(p_T^H > 600 \) GeV are anti-correlated with the bins at moderate \(p_T^H \).

7. Results

7.1. Total cross section and \(B_{\gamma\gamma}/B_{ZZ} \)

The total cross section for Higgs boson production, based on a combination of the \(H \to \gamma\gamma \) and \(H \to ZZ \) channels, is measured to be \(61.1 \pm 6.0 \) (stat) \(\pm 3.7 \) (syst) pb, obtained by applying the treatment described in Section 4 to the inclusive cross section (i.e. with a single bin, both at generator and at reconstruction level). The measured total cross sections from the individual channels are \(64.0 \pm 9.6 \) pb for \(H \to \gamma\gamma \) and \(58.2 \pm 9.8 \) pb for \(H \to ZZ \): the combination improves the precision by 27% with respect to the \(H \to \gamma\gamma \) channel individually. The likelihood scans for the individual decay channels and their combination are shown in Fig. 1 (upper). The combination result agrees with the SM value of \(55.6 \pm 2.5 \) pb [57]. A measurement of the branching fraction for one decay channel is degenerate with a measurement of the total cross section. However, the ratio of branching fractions for two decay channels can be measured while profiling the total cross section. The ratio of the \(H \to \gamma\gamma \) and \(H \to ZZ \) branching fractions, \(B_{\gamma\gamma}/B_{ZZ} \), is measured to be \(0.092 \pm 0.018 \) (stat) \(\pm 0.010 \) (syst). This is in agreement with the SM prediction of \(0.086 \pm 0.002 \) [57]. The likelihood scan for \(B_{\gamma\gamma}/B_{ZZ} \) is shown in Fig. 1 (lower).

7.2. Combinations of differential observables

The unfolded differential cross sections for the observables \(p_T^H \), \(N_{jets} \), \(\eta_{jets} \), and \(p_T^{jet} \) are shown in Figs. 2, 3, 4, and 5, respectively. Fig. 2 (lower) shows the differential cross section of \(p_T^H \) for Higgs boson production via gluon fusion; for this result, the non-gluon-fusion production modes are considered to be background, constrained to the SM predictions with their respective uncertainties. The numerical values for the spectra in Figs. 2–5 are given in Appendix A and the corresponding bin-to-bin correlation matrices are given in Appendix B. For the observables \(p_T^H \), \(N_{jets} \), and \(p_T^{jet} \), the rightmost bin is an overflow bin, which is normalized by the bin width of the second-to-rightmost bin. Overall no significant deviations from the SM predictions are observed. For the \(p_T^H \) spectrum, the dominant source of uncertainty is the statistical one; in particular, the systematic uncertainty is about half the statistical uncertainty in the rightmost bin, and much smaller than the statistical uncertainty in all other bins. The total uncertainty in the combination per bin varies between 30 and 40%. Compared to the measurement in the \(H \to \gamma\gamma \) channel alone, the decrease in uncer-
Fig. 2. Measurement of the total differential cross section (upper) and the differential cross section of gluon fusion (lower) as a function of \(p_T \). The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The dotted horizontal lines in the \(H \rightarrow ZZ \) channel indicate the coarser binning of this measurement. The rightmost bins of the distributions are overflow bins; the normalizations of the cross sections in these bins are indicated in the figure. CYRM-2017-002 refers to Ref. [57].

Fig. 3. Measurement of the differential cross section as a function of \(N_{jets} \). The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The spectra for the \(H \rightarrow \gamma\gamma \) and \(H \rightarrow ZZ \) channels are shown in red and blue, respectively. The dotted horizontal lines in the \(H \rightarrow ZZ \) channel indicate the coarser binning of this measurement. CYRM-2017-002 refers to Ref. [57].

Fig. 4. Measurement of the differential cross section as a function of \(|y| \). The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The spectra for the \(H \rightarrow \gamma\gamma \) and \(H \rightarrow ZZ \) channels are shown in red and blue, respectively. CYRM-2017-002 refers to Ref. [57].

7.3. Fits of Higgs boson coupling modifiers: \(\kappa_b \) vs. \(\kappa_c \)

Fig. 6 (upper) shows the one and two standard deviation contours of the fits of the \(\kappa_b/\kappa_c \) parametrization from Ref. [12] to data, assuming the branching fractions are dependent on the Higgs boson couplings, i.e., \(B = B(\kappa_b, \kappa_c) \), and that there are no beyond-the-SM contributions. The substructure on the combined scan shows a ring shape around the origin, in agreement with the SM prediction within one standard deviation.
In order to assess the constraint obtained only from the knowledge of the \(p_T^{\text{jet}} \) distribution, the total width and the overall normalization are profiled in the fit. This is effectively accomplished by implementing the branching fractions for the \(H \to \gamma \gamma \) and \(H \to ZZ \) channels as nuisance parameters with no prior constraint, i.e. as free parameters. The result of this fit is shown in Fig. 6 (lower). As expected, the range of allowed values of \(\kappa_b \) and \(\kappa_c \) is much wider than in the case of coupling-dependent branching fractions.

Confidence intervals can be set on \(\kappa_b \) and \(\kappa_c \) by profiling one coupling and scanning over the other. The results of these single-coupling scans are shown in Figs. 7 and 8. The observed (expected) limits at 95% CL in the one-dimensional scans are:

\[
\begin{align*}
-1.1 < \kappa_b < 1.1 & (\text{expected} -1.3 < \kappa_b < 1.3), \\
-4.9 < \kappa_c < 4.8 & (-6.1 < \kappa_c < 6.0),
\end{align*}
\]

in the case of branching fractions that depend on \(\kappa_b \) and \(\kappa_c \), and

\[
\begin{align*}
-8.5 < \kappa_b < 18 & (-8.8 < \kappa_b < 15), \\
-33 < \kappa_c < 38 & (-31 < \kappa_c < 36),
\end{align*}
\]

in the case of the branching fractions implemented as nuisance parameters with no prior constraint. For the coupling-dependent branching fractions, the results are shaped predominantly by the constraints from the total width rather than by distortions of the \(p_T^{\text{jet}} \) spectrum. If the branching fractions are fixed to their SM expectations, the one-dimensional scans yield the following expected limits at 95% CL:

\[
\begin{align*}
-3.5 < \kappa_b < 5.1, \\
-13 < \kappa_c < 15.
\end{align*}
\]

These intervals are comparable to those in Ref. [12], where \(\kappa_c \in [-16, 18] \) at 95% CL, noting that the results here are based on a larger data set. The intervals obtained are competitive with the intervals from other direct search channels summarized in Section 1.

7.4. Fits of Higgs boson coupling modifiers: \(\kappa_1 \) vs. \(c_g \) and \(\kappa_1 \) vs. \(\kappa_b \)

The fits are repeated in a way analogous to that of Section 7.3 but with \(\kappa_1 \), \(c_g \), and \(\kappa_b \), the coefficients of the dimension-6 operators added to the SM Lagrangian, as the parameters of the fit, using the parametrization obtained from Refs. [30,31]. The combined log-likelihood scan for \(\kappa_1 \) vs. \(c_g \), assuming branching fractions that depend on the couplings, is shown in Fig. 9 (upper). The normalization of the spectrum is, by construction, equal to the SM normalization for the set of coefficients satisfying \(12c_g + \kappa_1 \approx 1 \). The shape of the parametrized \(p_T^{\text{jet}} \) spectrum is calculated by normalizing the differential cross section to 1:

\[
S_l(k_1, c_g) = \frac{\sigma_l(k_1, c_g)}{\sum_j \sigma_j(k_1, c_g)},
\]

Fig. 5. Measurement of the differential cross section as a function of \(p_T^{\text{jet}} \). The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The spectra for the \(H \to \gamma \gamma \) and \(H \to ZZ \) channels are shown in red and blue, respectively. The dotted horizontal lines in the \(H \to ZZ \) channel indicate the coarser binning of this measurement. The rightmost bin of the distribution is an overflow bin; the normalization of the cross section in that bin is indicated in the figure. CYRM-2017-002 refers to Ref. [57].

Fig. 6. Simultaneous fit to data for \(\kappa_b \) and \(\kappa_c \), assuming a coupling dependence of the branching fractions (upper) and the branching fractions implemented as nuisance parameters with no prior constraint (lower). The one standard deviation contour is drawn for the combination (\(H \to \gamma \gamma \) and \(H \to ZZ \)), the \(H \to \gamma \gamma \) channel, and the \(H \to ZZ \) channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.
where σ_i is the parametrization in bin i. Inserting the expected parabolic dependence of $\sigma_i(\kappa_1, \kappa_2)$ reveals that the shape of the parametrization for κ_1/κ_2 variations becomes a function of the ratio of the two couplings, $s_i(\kappa_2/\kappa_1)$. Thus the dependence of the likelihood on the radial distance $\sqrt{\kappa_1^2 + \kappa_2^2}$ stems from constraints on the overall normalization, whereas the dependence on the slope κ_2/κ_1 stems from constraints on the shape of the distribution. The dependence of the likelihood on the slope becomes apparent in Fig. 9 (lower), where the branching fractions are implemented as nuisance parameters with no prior constraint in the fit. Except at small values of the couplings, the constraint on the couplings comes from their ratio. The two symmetric sets of contours are due to a symmetry of the parametrization under $(\kappa_1, \kappa_2) \rightarrow (-\kappa_1, -\kappa_2)$. The constraint from the $H \rightarrow \gamma \gamma$ channel individually is here slightly stronger than the combination; this effect, not observed in expected fits, stems from opposite deviations in the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ p_T spectra that cancel out in the combination.

Fig. 10 (upper) shows the combined log-likelihood scan as a function of κ_b and κ_c, with branching fractions scaling appropriately with the coupling modifiers and Fig. 10 (lower) with the branching fractions implemented as nuisance parameters with no prior constraint. As the $H \rightarrow \gamma \gamma$ branching fraction depends linearly on κ_1, the constraints on the $H \rightarrow \gamma \gamma$ channel and the combination in Fig. 10 (upper) are not symmetric with respect to the κ_1 axis. For the branching fractions implemented as nuisance parameters with no prior constraint, the parametrization is symmetric under $(\kappa_1, \kappa_b) \rightarrow (-\kappa_1, -\kappa_b)$, which explains the observed symmetry in Fig. 10 (lower).

8. Summary

A combination of differential cross sections for the Higgs boson transverse momentum p_T, the number of jets, the rapidity of the Higgs boson, and the p_T of the leading jet has been presented, using proton-proton collision data collected at $\sqrt{s} = 13$ TeV with the CMS detector, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The spectra obtained are based on data from the $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, and $H \rightarrow b\bar{b}$ decay channels. The precision of the combined measurement of the differential cross section of p_T is improved by about 15% with respect to the $H \rightarrow \gamma \gamma$ channel alone. The improvement is larger in the low-p_T region than in the high-p_T tails. No significant deviations from the standard model are observed in any differential distribution. Additionally,
We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MEMC, IEC, and CSIC, (Spain); BMBF (Germany); MSIP and NRF (Republic of Korea); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); INFN (Italy); MSIP and NRF (Republic of Korea); NKFIA (Hungary).
(Mexico); MOS (Montenegro); MBE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MoStR (Sri Lanka); Swiss Funding Agencies (Switzerland); MIST (Taipei); The European Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programe and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the A.G. Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds voor de Bevordering van de Wetenschap in de Industrie en in de Landbouw (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” -be.ch project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület ("Momentum") Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the National Scientific Research Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, and 125015 (Hungary); the Council of Science and Industial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Centre (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chula-Longkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Appendix A. Tables for the differential cross section measurements

Tables A1–A5 show the measured differential cross sections for the considered observables.

Table A1. Differential cross sections (pb/GeV) for the observable p_T^H.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H → γγ</td>
<td>1.0 ± 0.3</td>
<td>1.0 ± 0.3</td>
<td>0.5 ± 0.2</td>
<td>0.3 ± 0.1</td>
<td>0.1 ± 0.05</td>
<td>0.03 ± 0.01</td>
<td>0.01 ± 0.01</td>
<td>0.01 ± 0.005</td>
<td>0.01 ± 0.001</td>
</tr>
<tr>
<td>H → ZZ</td>
<td>0.7 ± 0.3</td>
<td>1.0 ± 0.4</td>
<td>0.4 ± 0.1</td>
<td>0.08 ± 0.03</td>
<td>0.02 ± 0.005</td>
<td>0.01 ± 0.001</td>
<td>0.01 ± 0.001</td>
<td>0.01 ± 0.0005</td>
<td>0.01 ± 0.0001</td>
</tr>
<tr>
<td>H → bθ</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comb.</td>
<td>0.8 ± 0.2</td>
<td>1.0 ± 0.3</td>
<td>0.6 ± 0.2</td>
<td>0.3 ± 0.09</td>
<td>0.1 ± 0.05</td>
<td>0.03 ± 0.005</td>
<td>0.01 ± 0.001</td>
<td>0.01 ± 0.0005</td>
<td>0.01 ± 0.0001</td>
</tr>
</tbody>
</table>

Table A2. Differential cross sections of gluon fusion (ggF) (pb/GeV) for the observable p_T^H, with non-ggF production modes fixed to their SM prediction.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb.</td>
<td>0.8 ± 0.2</td>
<td>1.0 ± 0.3</td>
<td>0.5 ± 0.2</td>
<td>0.2 ± 0.09</td>
<td>0.1 ± 0.05</td>
<td>0.02 ± 0.005</td>
<td>0.03 ± 0.001</td>
<td>0.03 ± 0.0005</td>
<td>0.03 ± 0.0001</td>
</tr>
</tbody>
</table>

Table A3. Differential cross sections (pb) for the observable N_{jet}.

<table>
<thead>
<tr>
<th>N_{jet}</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>≥4</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → γγ</td>
<td>50 ± 5.1</td>
<td>14 ± 1.1</td>
<td>4.8 × 10^−3 ± 1.2 ± 2.7</td>
<td>3.1 ± 2.0</td>
<td>1.2 ± 0.6</td>
</tr>
<tr>
<td>H → ZZ</td>
<td>41 ± 5.1</td>
<td>8.7 ± 1.1</td>
<td>6.5 ± 0.7 ± 3.0</td>
<td>1.2 ± 2.1</td>
<td>1.2 ± 0.6</td>
</tr>
<tr>
<td>Combination</td>
<td>47 ± 6.4</td>
<td>11 ± 1.4</td>
<td>3.5 ± 1.9 ± 1.7</td>
<td>1.8 ± 1.5</td>
<td>1.2 ± 0.6</td>
</tr>
</tbody>
</table>

Table A4. Differential cross sections (pb) for the observable $|y_{\text{jet}}|$.

| $|y_{\text{jet}}|$ | 0–0.15 | 0.15–0.3 | 0.3–0.6 | 0.6–0.9 | 0.9–1.2 | 1.2–2.5 |
|-------------------|--------|---------|--------|--------|--------|--------|
| H → γγ | 42 ± 11 | 39 ± 12 | 31 ± 9 | 28 ± 8 | 24 ± 12 | 18 ± 7 |
| H → ZZ | 39 ± 11 | 35 ± 11 | 34 ± 8 | 45 ± 11 | 13 ± 8 | 13 ± 7 |
| Combination | 41 ± 8.9 | 38 ± 9.2 | 32 ± 7 | 35 ± 7 | 17 ± 7 | 15 ± 5 |

Table A5. Differential cross sections (pb/GeV) for the observable $p_T^{\ell\ell}$.

<table>
<thead>
<tr>
<th>$p_T^{\ell\ell}$ (GeV)</th>
<th>30–55</th>
<th>55–95</th>
<th>95–120</th>
<th>120–200</th>
<th>>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → γγ</td>
<td>1.6 ± 0.1 × 10^−1 ± 2.0 ± 0.1 × 10^−1</td>
<td>2.0 ± 0.1 × 10^−1 ± 9.2 ± 0.1 × 10^−2</td>
<td>1.3 ± 0.1 × 10^−1 ± 9.5 ± 0.1 × 10^−2</td>
<td>1.5 ± 0.1 × 10^−1 ± 1.8 ± 0.1 × 10^−2</td>
<td>1.9 ± 0.1 × 10^−1 ± 9.1 ± 0.1 × 10^−2</td>
</tr>
<tr>
<td>H → ZZ</td>
<td>4.8 ± 0.1 × 10^−1 ± 2.0 ± 0.1 × 10^−1</td>
<td>7.7 ± 0.1 × 10^−1 ± 8.8 ± 0.1 × 10^−2</td>
<td>8.0 ± 0.1 × 10^−1 ± 9.2 ± 0.1 × 10^−2</td>
<td>8.4 ± 0.1 × 10^−1 ± 9.6 ± 0.1 × 10^−2</td>
<td>9.2 ± 0.1 × 10^−1 ± 8.0 ± 0.1 × 10^−2</td>
</tr>
<tr>
<td>Combination</td>
<td>3.2 ± 0.1 × 10^−1 ± 1.3 ± 0.1 × 10^−1</td>
<td>1.3 ± 0.1 × 10^−1 ± 6.1 ± 0.1 × 10^−2</td>
<td>1.1 ± 0.1 × 10^−1 ± 6.1 ± 0.1 × 10^−2</td>
<td>1.1 ± 0.1 × 10^−1 ± 6.1 ± 0.1 × 10^−2</td>
<td>2.7 ± 0.1 × 10^−1 ± 8.7 ± 0.1 × 10^−2</td>
</tr>
</tbody>
</table>
Appendix B. Correlation matrices for the combinations of differential observables

Figs. B.1–B.4 show the correlation matrices for the considered observables.

Fig. B.1. Bin-to-bin correlation matrix of the $p_T^{(g\gamma)}$ spectrum (upper) and of the p_T^H spectrum of gluon fusion (ggf), where the non-ggf contributions are fixed to the SM expectation (lower).

Fig. B.2. Bin-to-bin correlation matrix of the N_{jets} spectrum.

Fig. B.3. Bin-to-bin correlation matrix of the $|y_H|$ spectrum.

Fig. B.4. Bin-to-bin correlation matrix of the $p_T^{H(1)}$ spectrum.

References

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

A. Dimitrov, L. Litov, B. Pavlov, P. Petkov
University of Sofia, Sofia, Bulgaria

W. Fang, X. Gao, L. Yuan
Beihang University, Beijing, China

Institute of High Energy Physics, Beijing, China

Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Y. Wang
Tsinghua University, Beijing, China

C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado
Universidad de Los Andes, Bogotá, Colombia

B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac
University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

Z. Antunovic, M. Kovac
University of Split, Faculty of Science, Split, Croatia

V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa
Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

M. Finger, M. Finger Jr.
Charles University, Prague, Czech Republic

E. Ayala
Escuela Politecnica Nacional, Quito, Ecuador

E. Carrera Jarrin
Universidad San Francisco de Quito, Quito, Ecuador

H. Abdalla, A.A. Abdelalim, A. Mohamed
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

S. Gadrat

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

A. Khvedelidze

Georgian Technical University, Tbilisi, Georgia

Z. Tsamalaidze

Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

L. Barone a,b, F. Cavallari a, M. Cipriani a,b, D. Del Re a,b, E. Di Marco a,b, M. Diemoz a, S. Gelli a,b, E. Longo a,b, B. Marzocchi a,b, P. Meridiani a, G. Organtini a,b, F. Pandolfi a, R. Paramatti a,b, F. Preiato a,b, S. Rahatlou a,b, C. Rovelli a, F. Santanastasio a,b

a INFN Sezione di Roma, Rome, Italy
b Sapienza Università di Roma, Rome, Italy

N. Amapane a,b, R. Arcidiacono a,c, S. Argiro a,b, M. Arneodo a,c, N. Bartosik a, R. Bellan a,b, C. Biino a, A. Cappati a,b, N. Cartiglia a, F. Cenna a,b, S. Cometti a, M. Costa a,b, R. Covarelli a,b, N. Demaria a, B. Kiani a,b, C. Mariotti a, S. Maselli a, E. Migliore a,b, V. Monaco a,b, E. Montei a,b, M. Monteno a, M.M. Obertino a,b, L. Pacher a,b, N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a,b, A. Romero a,b, M. Ruspa a,c, R. Sacchi a,b, R. Salvatico a,b, K. Shchelina a,b, V. Sola a, A. Solano a,b, D. Soldi a,b, A. Staiano a

a INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy
c Università del Piemonte Orientale, Novara, Italy

t S. Belforte a, V. Candelise a,b, M. Casarsa a, F. Cossutti a, A. Da Rold a,b, G. Della Ricca a,b, F. Vazzoler a,b, A. Zanetti a

a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

Kyungpook National University, Daegu, Republic of Korea

H. Kim, D.H. Moon, G. Oh

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

B. Francois, J. Goh 29, T.J. Kim

Hanyang University, Seoul, Republic of Korea

Korea University, Seoul, Republic of Korea

H.S. Kim

Sejong University, Seoul, Republic of Korea

Seoul National University, Seoul, Republic of Korea

University of Seoul, Seoul, Republic of Korea

Y. Choi, C. Hwang, J. Lee, I. Yu

Sungkyunkwan University, Suwon, Republic of Korea

V. Dudenas, A. Juodagalvis, J. Vaitkus

Vilnius University, Vilnius, Lithuania

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada

Universidad de Sonora (UNISON), Hermosillo, Mexico

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck

University of Auckland, Auckland, New Zealand

S. Bheesette, P.H. Butler

University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sokov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepenkov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia
T. Aushev

Moscow Institute of Physics and Technology, Moscow, Russia

R. Chistov38, M. Danilov38, P. Parygin, D. Philippov, S. Polikarpov38, E. Tarkovskii

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin35, M. Kirakosyan, A. Terkulov

PN. Lebedev Physical Institute, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, M. Dubinin39, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Barnyakov40, V. Blinov40, T. Dimova40, L. Kardapoltsev40, Y. Skovpen40

Novosibirsk State University (NSU), Novosibirsk, Russia

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia

A. Babaev, S. Baidali, V. Okhotnikov

National Research Tomsk Polytechnic University, Tomsk, Russia

P. Adzic41, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, J.F. de Trocóniz

Universidad Autónoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

N. Wickramage

University of Ruhuna, Department of Physics, Matara, Sri Lanka

B. Grynyov

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

L. Levchuk

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Brunel University, Uxbridge, United Kingdom

K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. McMaster, N. Pastika, C. Smith

Baylor University, Waco, USA

R. Bartek, A. Dominguez

Catholic University of America, Washington, DC, USA

A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

The University of Alabama, Tuscaloosa, USA

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji, T.Y. Ling, W. Luo, B.L. Winer

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

S. Malik, S. Norberg

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

T. Cheng, J. Dolen, N. Parashar

Purdue University Northwest, Hammond, USA

Rice University, Houston, USA

University of Rochester, Rochester, USA

Rutgers, The State University of New Jersey, Piscataway, USA

A.G. Delannoy, J. Heideman, G. Riley, S. Spanier

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA

University of Wisconsin – Madison, Madison, WI, USA

1 Deceased.
2 Also at IFIN-HH, Bucharest, Romania.
3 Also at IFN–INFN, Rome, Italy.
4 Also at INFN, Frascati, Italy.
5 Also at Instituto Idex, Mexico City, Mexico.
6 Also at Laboratório de Instrumentação e Física Experimentais de Altas Energias, Brazil.
7 Also at Lund University, Lund, Sweden.
8 Also at University of California, Berkeley, USA.
9 Also at University of Oxford, UK.
10 Also at University of California, USA.
11 Also at University of California, Santa Barbara, USA.
12 Also at University of California, Berkeley, USA.
13 Also at University of California, Berkeley, USA.
14 Also at Indiana University Bloomington, Indiana, USA.
15 Also at INFN, Frascati, Italy.
16 Also at INFN, Rome, Italy.
17 Also at INFN, Frascati, Italy.
18 Also at University of Pennsylvania, Philadelphia, USA.
19 Also at University of Pennsylvania, Philadelphia, USA.
20 Also at University of Pennsylvania, Philadelphia, USA.
21 Also at University of Pennsylvania, Philadelphia, USA.
22 Also at University of Pennsylvania, Philadelphia, USA.
23 Also at University of Pennsylvania, Philadelphia, USA.
24 Also at University of Pennsylvania, Philadelphia, USA.
25 Also at University of Pennsylvania, Philadelphia, USA.
26 Also at University of California, Berkeley, USA.
27 Also at University of California, Berkeley, USA.
28 Also at University of California, Berkeley, USA.
29 Also at University of California, Berkeley, USA.
30 Also at University of California, Berkeley, USA.
31 Also at University of California, Berkeley, USA.
32 Also at University of California, Berkeley, USA.
33 Also at Universidad Nacional Autónoma de México, Mexico City, Mexico.
34 Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
35 Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
Also at University of Florida, Gainesville, USA.
Also at P.N. Lebedev Physical Institute, Moscow, Russia.
Also at California Institute of Technology, Pasadena, USA.
Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at National and Kapodistrian University of Athens, Athens, Greece.
Also at Riga Technical University, Riga, Latvia.
Also at Universität Zürich, Zurich, Switzerland.
Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria.
Also at Istanbul Aydin University, Istanbul, Turkey.
Also at Mersin University, Mersin, Turkey.
Also at Piri Reis University, Istanbul, Turkey.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Ozyegin University, Istanbul, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at Marmara University, Istanbul, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Istanbul University, Faculty of Science, Istanbul, Turkey.
Also at Istanbul Bilgi University, Istanbul, Turkey.
Also at Hacettepe University, Ankara, Turkey.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at Monash University, Faculty of Science, Clayton, Australia.
Also at Bethel University, St. Paul, USA.
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.
Also at Utah Valley University, Orem, USA.
Also at Purdue University, West Lafayette, USA.
Also at Beykent University, Istanbul, Turkey.
Also at Bingöl University, Bingöl, Turkey.
Also at Sinop University, Sinop, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Republic of Korea.